Государство и право

Характеристика элементов 4 группы главной подгруппы. Общая характеристика элементов IV- А группы. Свойства. Общая характеристика подгруппы

IV группа главная подгруппа

Применение

Германий широко используется как полупро­водник. Почти половина производимого олова идет на из­готовление жести, главным потребителем которой является производство консервов. Значительное количество олова рас­ходуется на получение сплавов – бронзы (медь + 10 – 20% Sn). Оксид олова (IV) применяется для изготовления полупроводни­ковых сенсоров. Химические полупроводниковые сенсоры – чувствительные элементы на основе SnО 2 , In 2 O 3 , ZnO, TiO, преобразующие энергию химического процесса в электри­ческую. Взаимодействие определяемого газа (О 2 , СО, NО 2) с чувствительным материалом сенсора вызывает обратимое изменение его электропроводности, которое регистрируется электронным устройством.

К элементам IV (14 по новой номенклатуре ЮПАК) группы главной подгруппы относятся: углерод С, кремний Si, германий Ge, олово Sn, свинец Pb.

В основном состоянии атомы пниктогенов имеют электронную конфигурацию внешнего энергетического уровня – …ns 2 np 2 , где n – главное квантовое число (номер периода). Для атомов элементов IV группы главной подгруппы характерны следующие степени окисления: для углерода – (–4, 0, +2, +4); для кремния – (–4, 0, (+2), +4); для германия – ((–4), 0, +2, +4); для олова – (0, +2, +4), для свинца – (0, +2, +4).

Устойчивость соединений с высшей степенью окисления +4 максимальна для кремния и понижается в ряду Ge – Sn – Pb. Это объясняется тем, что затраты энергии на перевод электрона с s на p подуровень не компенсируются энергией образующихся химических связей. Устойчивость соединений со степенью окисления +2 возрастает.

В табл. 1 представлены основные свойства IV (14) группы главной подгруппы.

Свойство С Si Ge Sn Pb
Заряд ядра
Электронная конфигурация внешнего энергетического уровня в основном состоянии …2s 2 2p 2 …3s 2 3p 2 …4s 2 4p 2 …5s 2 5p 2 …6s 2 6p 2
Орбитальный радиус, пм
Энергия ионизации , эВ 11,26 8,15 7,90 7,34 7,42
Энергия сродства к электрону, , эВ 1,26 1,38 1,2 1,2
Температура плавления, ºС 3300 (субл.)
Температура кипения, ºС
Электроотрицательность: по Полингу по Оллреду-Рохову 2,55 2,50 1,90 1,74 2,01 2,02 1,96 1,72 2,33 1,55

В IV группе главной подгруппе сверху вниз орбитальный радиус увеличивается. Неравномерное изменение радиуса при переходе от Si к Ge и от Sn к Pb обусловлено эффектами d и f-сжатия. Электроны 3d и 4f-подуровней слабо экранируют заряд ядер атомов. Это приводит к сжатию электронных оболочек германия и свинца из-за повышения эффективного заряда ядра.



В IV группе главной подгруппе сверху вниз эффективный заряд ядра увеличивается, орбитальный радиус также увеличивается, энергия ионизации уменьшается, восстановительные свойства атомов возрастают.

Углерод отличается от других атомов элементов IV группы главной подгруппы высоким значением энергии ионизации.

Атом углерода не имеет свободных d-орбиталей, валентные электроны атома углерода (... 2s 2 2p 2) слабо экранированы от действия ядра, что объясняет небольшой радиус атома углерода и высокие значения энергии ионизации и электроотрицательности.

В IV группе главной подгруппе сверху вниз эффективный заряд ядра увеличивается, орбитальный радиус увеличивается, энергия сродства к электрону уменьшается, окислительные свойства атомов уменьшаются.

Энергия сродства к электрону у атома углерода меньше, чем у атома кремния, что связано с небольшим радиусом атома углерода и сильным межэлектронным отталкиванием при присоединении электрона к атому.

В IV группе главной подгруппе сверху вниз энергия ионизации уменьшается, энергия сродства к электрону уменьшается, электроотрицательность уменьшается.

С изменением энергии ионизации свойства элементов IV группы главной подгруппы изменяются от типичных неметаллов к металлам. Углерод и кремний – типичные неметаллы, германий – металлоид с характерными металлическими свойствами, олово, свинец – металл.

В IV группе главной подгруппе сверху вниз температуры плавления и кипения уменьшаются.

Понижение температуры плавления обусловлено увеличением доли металлической связи.

Строение электронной оболочки: …ns 2 np 2 .

УГЛЕРОД и его соединения

Встречается в почве (карбонаты), в воздухе (углекислый газ), основа живой и растительной жизни.

Физические свойства

Аллотропен: а)алмаз (sp 3 – гибридизация, тетраэдр) – самый твердый, не проводит электрический ток;

б)графит (sp 2 – гибридизация, гексагональное строение) – легко расслаивается, проводит электрический ток;

в)карбин (sp – гибридизация, линейное строение) – полупроводник;

г)угли (рентгеноаморфны) – кокс, древесный и костяной уголь, сажа.

Химические свойства углерода и его соединений.

1)Реакции с простыми веществами:

С + О 2 = СО (СО 2)

С + Н 2 = СН 4

С + 2CI 2 = СCI 4

2)Реакции со сложными веществами (при повышенной при t o):

а) С + Н 2 О = СО + H 2 ,

б) С + СО 2 = 2СО,

в) С + FeO = Fe + CO,

г) С + H 2 SO 4(конц.) ® H 2 СO 3 (или СO 2) + SO 2

С + HNO 3(конц.) ® H 2 СO 3 (или СO 2) + NO (или NO 2)

Степень окисления +2

СО – закись углерода, «угарный газ» - бесцветный ядовитый газ, без запаха.

Получение оксида углерода (П):

а) СО 2 + С = 2СО (неполное выгорание каменного угля),

б)разложение муравьиной кислоты в присутствие H 2 SO 4(конц.) :

НСООН ® СО + H 2 О

Химические свойства оксида углерода (П):

1)Сильный восстановитель:

а)восстанавливает металлы из оксидов: Fe 3 O 4 + 4CO = 3Fe + 4СO 2 ,

б)СО + СI 2 = СOCI 2 – фосген (ядовит),

в)2СО + СО 2 = 2СО 2 .

2)Участвует в органическом синтезе, например СО + 2Н 2 ® СН 3 ОН.

3)Ядовит, т.к. при неполном сгорании угля может быть «угар»: соединяется с гемоглобином крови, составляя конкуренцию кислороду, и в виде карбоксигемоглобина по артериальному руслу движется ко всем клеткам организма.

Степень окисления +4

1)СО 2 – угольный ангидрид, «углекислый газ» - бесцветный тяжелый газ, не поддерживает горения. Твердый оксид (t o пл. = -56,5 о С) называют часто «сухой лед», т.к. при его таяние нет следов влаги.

Получение углекислого газа:

а)в лаборатории: СаСО 3 + 2НСI = СаСI 2 + Н 2 СО 3 (СО 2 + H 2 О),

б)в промышленности термическим разложением известняка:

СаСО 3 ® СаО + СО 2

2)Н 2 СО 3 – слабая, неустойчивая угольная кислота:

К 1 = 4,5 . 10 -7 ; К 2 = 4,7 . 10 -11

3)Соли угольной кислоты (карбонаты и гидрокарбонаты):

а)кислые соли растворимы лучше средних,

б)соли хорошо гидролизуются: СО 3 2- + НОН « НСО 3 - + ОН - ,

в)при прокаливании соли разлагаются:

MgСО 3 ® MgО + СО 2 ,

2NaНСО 3 ® Na 2 СО 3 + СО 2 + H 2 О,

4)CS 2 – сероуглерод, летучая ядовитая бесцветная жидкость, растворитель:

CS 2 + 3О 2 = СО 2 + 2SО 2

CS 2 + 2 H 2 О = СО 2 + 2 H 2 S

5) Н 2 CS 3 – тиоугольная кислота (слабая), маслянистая жидкость, разлагается водой: Н 2 CS 3 + H 2 О = Н 2 CО 3 + H 2 S



6) Cульфидокарбонаты (тиокарбонаты) – похожи на карбонаты;

а)их можно получить: К 2 S + CS 2 = К 2 CS 3

б)подобно карбонатам, тиокарбонаты разлагаются кислотами:

К 2 CS 3 + 2НСI = Н 2 CS 3 + 2КСI

1) (CN) 2 –дициан NºC-CºN – ядовитый газ, получают при термическом разложении цианидов: Hg(CN) 2 ® Hg + (CN) 2

Похож на галоген: а) Н 2 + (CN) 2 = 2HCN (синильная кислота) – яд;

б)диспропорционирует (CN) 2 + 2NaOH = 2NaCN + 2NaCNO.

2)HCN –синильная кислота и ее соли цианиды (ядовиты, смертельная доза 0,05г); кислота слабая, дает средние и комплексные соли:

а) 3KCN (яд) + Fe(CN) 3 ® K 3 (не ядовита) ,

б) 2KCN + О 2 = 2KCNO (цианат K-O-CºN),

в) NaCN + S = NaCNS (тиоцианат Na-S-CºN).

3)Тиоцианаты (роданиды) – соли сильной тиоциановой (родановой) кислоты НCNS; хорошо растворимы, легко образуют комплексы:

3KCNS + Fe(CNS) 3 ® K 3 .

4)CO(NH 2) - мочевина (карбамид).

ОБЩАЯ ХАРАКТЕРИСТИКА ПОДГРУППЫ

6 С, 14 Si, 32 Ge, 50 Sn, 82 Pb. Для них характерна аллотропия и поэтому нельзя однозначно говорить о физических свойствах какого-либо элемента. По подгруппе сверху вниз закономерно возрастают металлические свойства и это согласуется со значениями степеней окисления, проявляемыми элементами в соединениях:

Химические свойства

1. С простыми веществами дают бинарные соединения, которые по-разному взаимодействуют с водой:

С + О 2 = СО 2 ; СО 2 + H 2 O Û Н 2 СО 3 ;

Si + 2F 2 = SiF 4 ; ;

Ge + 2Cl 2 = GeCl 4 ; .

(GeO 2 × H 2 O)

2. С кислотами взаимодействуют по-разному, в зависимости от преобладания неметаллической или металлической природы:

а) С + 2Н 2 SO 4 конц. = CO 2 ­ + 2SO 2 ­ + 2H 2 O;

б) Sn + 4HNO 3 конц. = H 2 SnO 3 + 4NO 2 ­ + H 2 O;

в) Pb + 2HCl = PbCl 2 + H 2 ­ .

3. Реакции со щелочами также идут по-разному:

4. Соли этих элементов гидролизуются, причём характер гидролиза закономерно меняется по подгруппе соответствующих элементов:

а) SnCl 4 + 3H 2 O = H 2 SnO 3 ¯ + 4HCl;

(SnO 2 × H 2 O)

б) SnCl 2 + H 2 O Û SnOHCl + HCl;

в) Pb(NO 3) 2 + H 2 O Û PbOHNO 3 + HNO 3 .

5. У оксидов и гидроксидов этих элементов в зависимости от степени окисления соответственно меняются кислотные и основные свойства:

а) С +4 и Si +4 образуют слабые неустойчивые кислоты;

б) Для соединений элементов подгруппы германия со с.о. (+2) по ряду можно установить следующую закономерность: они амфотерны, основные свойства растут с увеличением порядкового номера. То же самое можно сказать и о гидроксидах.

в) У соединений элементов подгруппы германия со степенью окисления (+4) по ряду: сохраняется амфотерность, причем кислотные свойства растут с уменьшением порядкового номера элемента. Образуют соли: мета – (германаты, станнаты, плюмбаты) Ме 2 ЭО 3 и орто - Ме 4 ЭО 4 .

6. Элементы образуют комплексные соединения, проявляя значения к.ч. = 4 (для Э +2) и к.ч. = 6 (для Э +4):

SiF 4 + 2NaF ® Na 2 ;

Sn(OH) 4 + 2NaOH ® Na 2 ;

PbJ 2 + 2KJ ® K 2 .

7. В окислительно-восстановительных реакциях элементы и их соединения проявляют двойственность:

а) Э 0 – прежде всего восстановитель :

С + 2Cl 2 = CCl 4 ;

Sn + O 2 = SnO 2 .

б) Э +2 восстановители :

CO + Cl 2 = COCl 2 ;

SnCl 2 + 2FeCl 3 = SnCl 4 + 2FeCl 2 ,

но могут быть и окислителями:

PbCI 2 + Mg = Pb + MgCI 2

в) Э +4 окислители (особенно активно Pb +4 ® Pb +2):

PbO 2 + H 2 O 2 = Pb(OH) 2 + O 2 ­ .

Тема: Общая характеристика элементов IV- А группы.

Свойства.

Цель : Рассмотреть общую характеристику элементов IV- А группы на примере углерода и кремния; физические и химические свойства этих элементов, дать понятия «абсорбция».

Образовательные : научить учащихся самостоятельно добывать знания путём рационального использования различных источников информации (учебники, научно-популярная литература) и применять полученные знания; устанавливать причинно - следственные связи между строением, свойствами и использованием веществ на основе изученных теорий, обобщить и систематизировать знания учащихся об углероде и кремнии их соединениях, значении этих веществ в природе и в жизни человека;

Развивающие : развивать познавательный интерес школьников, умение выделять главное, сравнивать, обобщать, логически излагать мысли;

воспитывать здоровьесберегающее поведение на уроках.

Оборудование : компьютер, презентация, учебник, таблица « Периодическая система химических элементов»

Ход урока:

1.Организационный момент.

2.Проверка домашнего задания.

3.Актуализация опорных знаний

(фронтальная беседа).

Назовите элементы, входящие в IV группу.

Назовите элементы побочной подгруппы IV группы.

4.Изучение нового материала.

Положение в Периодической системе химических элементов, строение атома C, Si

Учитель . Ребята, давайте посмотрим на Периодическую систему химических элементов и определим, какие элементы входят I V-А подгруппу?

Ответ учащегося.

В главную подгруппу I V-А гр. Входят элементы: C , Si , Ge , Sn , Pb -

C ,Si ,Ge – неметаллы- Sn ,Pb – металлы

Учитель . Что общего в строении атомов этих элементов?

( работа учащихся у доски )

1. Углерод

6 C)2)4

2 s 22 p 2

2. Кремний

14 Si)2)8)4

3 s 23 p 2

Ответ учащегося . Имеют одинаковое строение атома (на последнем уровне 4е). ns 2 np 2 и проявляют валентность II , IV

Учитель. Как изменяются свойства элементов с увеличением Аг?

Ответ учащегося . С увеличением Аг возрастают металлические свойства, а неметаллические уменьшаются.

Учитель . Какие высшие оксиды образуют элементы 1V-А группы?

Ответ учащегося . Образуют высшие оксиды типа – RO 2 ( работа учащегося у доски ) CO 2, SiO 2 Ge O 2 SnO 2 Pb O 2

Учитель. Какие летучие водородные соединения образуют эти элементы?

Ответ учащегося. Летучие водородные соединения типа- RH 4 ( CH 4 , SiH 4 )

Учитель. Углерод образует 2 аллотропных видоизменений: графит, алмаз

Таблица «Строение кристаллических решеток алмаза и графита»

Аллотропия углерода

Графит

алмаз

физические свойства

темно-серое, проводит электрический ток и тепло

Прозрачное кристаллическое твердое вещество с характерным блеском.

t =1420плавления; не проводит электрический ток и тепло

Работа в группах с учебником. Обмен информацией. Запись в тетради.

Группа №1 Группа №2

С

Si

нахождение в природе

мел CaCO 3 мрамор алмаз

Графит

Малахит CuCO 3

Нефть

27% земной коры - песок SiO 2

химические свойства

C +2H 2 → CH 4

C + O 2 →CO 2

3 C + 4 AL →AL 4 C 3

Ca +2C → CaC 2

2 AL 2 O 3 +3C →4AL + 3CO 2

Si +O 2 → Si O 2

Si +2CL 2 →SiCL 4

Si +2Br 2 → SiBr 4

2Mg + Si → Mg 2 Si

Применение

наконечники буров, стеклорезы, шлифовочный порошок, драгоценные камни, медицинаочистка спирта от сивушных масел

очистка сахара на рафинадных заводах от веществ, придающих ему желтый цвет

на основе адсорбционных свойств древесного угля русский химик Николай Дмитриевич Зелинский разработал фильтрующий противогаз

(демонстрация строения фильтрующей коробки противогаза).

Полупроводник (солнечные батареи)

Сталь

Строительный песок

Адсорбция- способность поглощать газы и растворенные вещества поверхностью твёрдого тела жидкости (из-за пористого строения тела).

Проблемный вопрос: Адсорбция – это физический или химический процесс?

Демонстрационный опыт «Адсорбция». ОПЫТ: К раствору синего лакмуса добавить размельчённый активированный уголь. Отфильтровать полученную смесь. Фильтрат совершенно прозрачный.

ОТВЕТ : физический, т.к. при этом не изменяется состав вещества

5Систематизация и обобщение знаний

Осуществите превращения. Напишите соответствующие уравнения реакции.

CH 4 C CO CO 2 H 2 CO 3

CaC 2

Рефлексия

Как вы считаете, достиг ли наш урок поставленной цели?

Что бы вы хотели выполнить еще раз, а что сделали по-другому?

Получили ли вы положительные эмоции от сегодняшнего урока?

6. Д/з

На рис. 15.4 показано расположение в периодической таблице пяти элементов IV группы. Подобно элементам III группы, они принадлежат, к числу p-элементов. Атомы всех элементов IV группы имеют однотипную электронную конфигурацию внешней оболочки: . В табл. 15.4 указаны конкретная электронная конфигурация атомов и некоторые свойства элементов IV группы. Эти и другие физические и химические свойства элементов IV группы связаны с их строением, а именно: углерод (в форме алмаза), кремний и германий имеют каркасную кристаллическую алмазоподобную структуру (см. разд. 3.2); олово и свинец имеют металлическую структуру (гранецентрированную кубическую, см. также разд. 3.2).

Рис. 15.4. Положение элементов IV группы в периодической системе.

При перемещении вниз по группе происходит возрастание атомного радиуса элементов и ослабление связи между атомами. Из-за последовательно усиливающейся делокализации электронов внешних атомных оболочек в этом же направлении пррисходит и возрастание электропроводности элементов IV группы. Их свойства

Таблица 15.4. Электронные конфигурации и физические свойства элементов IV группы

постепенно изменяются от неметаллических к металлическим: углерод - неметаллический элемент и в форме алмаза является изолятором (диэлектриком); кремний и германий - полупроводники; олово и свинец - металлы и хорошие проводники.

Из-за возрастания размера атомов при переходе от элементов верхней части группы к элементам ее нижней части происходит последовательное ослабление связи между атомами и, соответственно этому, уменьшение температуры плавления и температуры кипения, а также твердости элементов.

Аллотропия

Кремний, германий и свинец существуют каждый лишь в одной структурной форме. Однако углерод и олово существуют в нескольких структурных формах. Различные структурные формы одного элемента называются аллотропами (см. разд. 3.2).

Углерод имеет два аллотропа: алмаз и графит. Их структура описана в разд. 3.2. Аллотропия углерода - пример монотропии, для которой характерны следующие особенности: 1) аллотропы могут существовать в определенном интервале температур и давлений (например, как алмаз, так и графит существуют при комнатной температуре и атмосферном давлении); 2) не существует температуры перехода, при которой один аллотроп превращается в другой; 3) один аллотроп более устойчив, чем другой. Например, графит обладает большей устойчивостью, чем алмаз. Менее устойчивые формы называются метастабилъными. Следовательно, алмаз представляет собой метастабильный аллотроп (или монотроп) углерода.

Углерод может еще существовать в других формах, к которым относятся древесный уголь, кокс и газовая сажа. Все они являются неочищенными формами углерода. Иногда их называют аморфными формами, а раньше считали, что они представляют собой третью аллотропную форму углерода. Термин аморфный означает бесформенный. В настоящее время установлено, что «аморфный» углерод-это не что иное, как микрокристаллический графит.

Олово существует в трех аллотропных формах. Они называются: серое олово (а-олово), белое олово (Р-олово) и ромбическое олово (у-олово). Аллотропия такого типа, как у олова, называется энантиотропией. Она характеризуется следующими особенностями: 1) превращение одного аллотропа в другой происходит при определенной температуре, называемой температурой перехода; например

Структура влмаза Металлическая (полупроводник) структура 2) каждый аллотроп устойчив только в определенном интервале температур.

Реакционная способность элементов IV группы

Реакционная способность элементов IV группы в целом возрастает при перемещении к нижней части группы, от углерода к свинцу. В электрохимическом ряду напряжений только олово и свинец расположены выше водорода (см. разд. 10.3). Свинец очень медленно реагирует с разбавленными кислотами, высвобождая водород. Реакция между оловом и разбавленными кислотами протекает с умеренной скоростью.

Углерод окисляется орячими концентрированными кислотами, например концентрированной азотной кислотой и концентрированной серной кислотой.

IVА-группу периодической системы элементов Д.И. Менделеева составляют углерод, кремний, германий, олово, свинец. Общая электронная формула валентной оболочки атомов элементов IVА-группы.

Атомы этих элементов имеют по четыре валентных электрона на s- и р-орбиталях внешнего энергетического уровня. В невозбужденном состоянии не спарены два р-электрона. Следовательно, в соединениях эти элементы могут проявлять степень окисления +2. Но в возбужденном состоянии электроны внешнего энергетического уровня приобретают конфигурацию пs1пр3 , и все 4 электрона оказываются неспаренными.

Например, для углерода переход с s-подуровня на р-подуровень можно представить следующим образом.

В соответствии с электронным строением возбужденного состояния элементы IVА-группы могут проявлять в соединениях степень окисления +4. Радиусы атомов элементов IVА-группы закономерно возрастают с увеличением порядкового номера. В этом же направлении закономерно снижается энергия ионизации и электроотрицательность.

При переходе в группе С--Si--Gе--Sn--Рb уменьшается роль неподеленной электронной пары на внешнем s-подуровне при образовании химических связей. Поэтому если для углерода, кремния и германия наиболее характерна степень окисления +4, то для свинца +2.

В живом организме углерод, кремний и германий находятся в степени окисления +4, для олова и свинца характерна степень окисления +2.

В соответствии с возрастанием размеров атомов и падением энергии ионизации при переходе от углерода к свинцу неметаллические свойства ослабевают, так как снижается способность присоединять электроны и увеличивается легкость их отдачи. Действительно, первые два члена группы: углерод и кремний -- типичные неметаллы, германий, олово и свинец -- амфотерные элементы с ярко выраженными металлическими свойствами у последнего.

Усиление металлических признаков в ряду С--Si--Gе--Sn--Рb проявляется и в химических свойствах простых веществ. В обычных условиях элементы С, Si, Gе и Sn устойчивы по отношению к воздуху и воде. Свинец же окисляется на воздухе. В электрохимическом ряду напряжений металлов Gе располагается после водорода, а Sn и Рb непосредственно перед водородом. Поэтому германий не реагирует с кислотами типа НСl и разбавленной Н2SО4.

Электронное строение и размер атома, среднее значение электроотрицательности объясняют прочность связи С--С и склонность атомов углерода к образованию длинных гомоцепей:

Благодаря промежуточному значению электроотрицательности углерод образует малополярные связи с жизненноважными элементами -- водородом, кислородом, азотом, серой и др.

Химические свойства кислородных соединений углерода и кремния. Среди неорганических соединений углерода, кремния и их аналогов для медиков и биологов наибольший интерес представляют кислородные соединения этих элементов.

Углерод (IV) и кремний (IV) оксиды ЭО2 являются кислотными, и соответствующие им гидроксиды Н2ЭО3 -- слабыми кислотами. Соответствующие оксиды и гидроксиды остальных элементов IVА-группы амфотерны.

Диоксид углерода СО2. постоянно образуется в тканях организма в процессе обмена веществ и играет важную роль в регуляции дыхания и кровообращения. Диоксид углерода является физиологическим стимулятором дыхательного центра. Большие концентрации СО2 (свыше 10%) вызывают сильный ацидоз -- снижение рН крови, бурную одышку и паралич дыхательного центра.

Диоксид углерода растворяется в воде. При этом в растворе образуется угольная кислота:

Н2О + СО2 ? Н2СО3

Равновесие смещено влево, поэтому большая часть углерода диоксида находится в виде гидрата СО2 Н2О, а не Н2СО3. Угольная кислота Н2СО3 существует только в растворе. Относится к слабым кислотам.

Как двухосновная кислота, Н2СО3 образует средние и кислые соли: первые называются карбонатами: Nа2СО3, СаСО3 --карбонаты натрия и кальция; вторые -- гидрокарбонатами: NаНСО3, Са(НСО3)2 --гидрокарбонаты натрия и кальция. Все гидрокарбонаты хорошо растворимы в воде; из средних солей растворимы карбонаты щелочных металлов и аммония.

Растворы солей угольной кислоты вследствие гидролиза имеют щелочную реакцию (рН>7), например:

Nа2СО3 + НОН? NаНСО3 + NаОН

СО32- + НОН? НСO3- + ОН-

Водородкарбонатная буферная система (Н2СО3--НСО3-) служит главной буферной системой плазмы крови, обеспечивающей поддержание кислотно-основного гомеостаза, постоянного значения рН крови порядка 7,4.

Так как при гидролизе карбонатов и гидрокарбонатов получается щелочная среда, эти соединения применяют в медицинской практике в качестве антацидных (нейтрализующих кислоты) средств при повышенной кислотности желудочного сока. К ним относятся гидрокарбонат натрия NаНСО3 и карбонат кальция СаСО3:

NаНСО3 + НСl = NaСl + Н2О + СО2

СаСО3 + 2НСl = СаСl2 + Н2О + СО2

В силикатный цемент, содержащий SiO2, добавляется жидкость, которая представляет собой водный раствор ортофосфорной кислоты Н3РО4, частично нейтрализованный оксидом цинка ZnО и гидроксидом алюминия Аl(ОН)3. Процесс «схватывания» силикат-цемента начинается с разложения порошка ортофосфорной кислотой с образованием коллоидных растворов фосфата алюминия и кремниевых кислот переменного состава xSiO2 yН2О:

Аl2О3 + 2Н3РО4 = 2АlРО4 + 3Н2О

хSiO2 + уН3О+ = хSiO2 уН2О + yН+

В процессе приготовления пломб в результате перемешивания происходят химические реакции с образованием фосфатов металлов, например

3СаО + 2Н3РО4 = Са3(РО4)2 + 3Н2О

В воде хорошо растворимы силикаты только щелочных металлов. При действии минеральных кислот на растворы силикатов получают кремниевые кислоты, например метакремниевую Н2SiO3 и ортокремниевую Н4SiO4.

Кремниевые кислоты слабее угольной, они выпадают в осадок при действии СО2 на растворы силикатов. Силикаты сильно гидролизуются. Это является одной из причин разрушения силикатов в природе.

При сплавлении различных смесей силикатов друг с другом или с кремнием диоксидом получаются прозрачные аморфные материалы, называемые стеклами.

Состав стекла может изменяться в широких пределах и зависит от условий получения.

Кварцевое стекло (почти чистый кремнезем) переносит резкие изменения температуры, почти не задерживает ультрафиолетовые лучи. Такое стекло используют для приготовления ртутно-дуговых ламп, которые широко применяют в физиотерапии, а также стерилизации операционных.

Фарфоровые массы, применяемые в ортопедической стоматологии, состоят из кварца SiO2 (15--35%) и алюмосиликатов: полевого шпата Э2О Аl2О3 6SiO2, где Э-- К, Na или Са (60--75%), и каолина Аl2О3 2SiO2 2Н2О (3--10%). Соотношение компонентов может меняться в зависимости от назначения фарфоровой массы.

Полевой шпат К2О Аl2О3 6SiO2 -- основной материал для получения стоматологических фарфоровых масс. При плавлении он превращается в вязкую массу. Чем больше полевого шпата, тем прозрачнее фарфоровая масса после отжига. При отжиге фарфоровых масс полевой шпат, как более легкоплавкий, понижает температуру плавления смеси.

Каолин (белая глина) -- необходимая часть стоматологического фарфора. Добавка каолина уменьшает текучесть фарфоровой массы.

Кварц, входящий в состав стоматологического фарфора, упрочняет керамическое изделие, придает ему большую твердость и химическую стойкость.

Моноксид углерода СО. Из соединений элементов IVА-группы, в которых они проявляют степень окисления +2, интерес для медиков и биологов представляет оксид углерода (II) СО. Это соединение ядовито и чрезвычайно опасно, потому что не имеет запаха.

Оксид углерода (II) -- угарный газ -- продукт неполного окисления углерода. Как это ни парадоксально, одним из источников СО является сам человек, организм которого производит и выделяет во внешнюю среду (с выдыхаемым воздухом) за сутки около 10мл СО. Это так называемый эндогенный оксид углерода (II), который образуется в процессах кроветворения.

Проникая с воздухом в легкие, оксид углерода (II) быстро проходит через альвеолярно-капиллярную мембрану, растворяется в плазме крови, диффундирует в эритроциты и вступает в обратимое химическое взаимодействие как с окисленным НbО2, так и с восстановленным гемоглобином Нb:

НbО2 + СО? НbСО + О2

Нb + СО? НbСО

Образующийся карбонилгемоглобин НbСО не способен присоединять к себе кислород. Вследствие этого становится невозможным перенос кислорода от легких к тканям.

Высокое химическое сродство оксида углерода (II) СО к двухвалентному железу является основной причиной взаимодействия СО с гемоглобином. Можно полагать, что и другие бионеорганические соединения, содержащие ионы Fе2+, должны реагировать с этим ядом.

Так как реакция взаимодействия оксигемоглобина с угарным газом обратима, то повышение в дыхательной среде парциального давления О2 будет ускорять диссоциацию карбонилгемоглобина и выделение СО из организма (равновесие смешается влево по принципу Ле Шателье):

НbО2 + СО? НbСО + О2

В настоящее время имеются лечебные препараты, которые используют в качестве антидотов при отравлении организма оксидом углерода (II). Например, введение восстановленного железа резко ускоряет удаление СО из организма в виде, очевидно, карбонила железа. Действие этого препарата основано на способности СО выступать в качестве лиганда в различных комплексах.

Химические свойства соединений олова и свинца. Оксиды олова (II) и свинца (II), SnО и РbО амфотерны, так же как и соответствующие им гидроксиды Sn(ОН)2 и Рb(ОН)2.

Соли Рb2+ -- ацетат, нитрат -- хорошо растворимы в воде, малорастворимы хлорид и фторид, практически нерастворимы сульфат, карбонат, хромат, сульфид. Все соединения свинца (II), в особенности растворимые, ядовиты.

Биологическая активность свинца определяется его способностью проникать в организм и накапливаться в нем.

Свинец и его соединения относятся к ядам, действующим преимущественно на нервно-сосудистую систему и непосредственно на кровь. Химизм токсического действия свинца весьма сложен. Ионы Рb2+ являются сильными комплексообразователями по сравнению с катионами остальных р-элементов IVА-группы. Они образуют прочные комплексы с биолигандами.

Ионы Рb2+ способны взаимодействовать и блокировать сульфгидрильные группы SН белков, в молекулах ферментов, участвующих в синтезе порфиринов, регулирующих синтез тема и других биомолекул:

R--SН + Рb2+ + НS--R > R--S--Рb--S--R + 2Н+

Часто ионы Рb2+ вытесняют естественные ионы М2+, ингибируя металлоферменты ЕМ2+:

ЕМ2+ + Рb2+ > ЕРb2+ + М2+

Вступая в реакции с цитоплазмой микробных клеток и тканей, ионы свинца образуют гелеобразные альбуминаты. В небольших дозах соли свинца оказывают вяжущее действие, вызывая гелефикацию белков. Образование гелей затрудняет проникновение микробов внутрь клеток и снижает воспалительную реакцию. На этом основано действие свинцовых примочек.

По мере увеличения концентрации ионов Рb2+ образование альбуминатов приобретает необратимый характер, накапливаются альбуминаты белков R--СООН поверхностных тканей:

Рb2+ + 2R--СООН = Рb(R--СОО)2 + 2Н+

Поэтому препараты свинца (II) оказывают преимущественно вяжущее действие на ткани. Их назначают исключительно для наружного применения, поскольку, всасываясь в желудочно-кишечном тракте или дыхательных путях, они проявляют высокую токсичность.

Неорганические соединения олова (II) не очень ядовиты, в противоположность органическим соединениям олова.