История 

Методика центрифугирования. Центрифугирование. Его использование в разных направлениях биологии. Классификация методов препаративного центрифугирования

Метод центрифугирования основан на различном поведении частиц в центробежном поле, создаваемом центрифугой. Образец, находящийся в сосуде для центрифугирования, помещают в ротор, который приводится в движение приводом центрифуги. Для разделения смеси частиц необходимо выбрать набор условий, таких как скорость вращения, время центрифугирования и радиус ротора. Для сферических частиц скорость осаждения (седиментации) зависит не только от ускорения, но и от радиуса и плотности частиц, а так же от вязкости среды, в которой производится осаждение образца.

Центрифугирование можно разделить на два вида: препаративное и аналитическое. Препаративное центрифугирование используется в случае, когда необходимо выделить часть образца для дальнейших исследований. Этот метод применяется для выделения клеток из суспензии, биологических макромолекул и т.д.

Аналитическое центрифугирование применяется для изучения поведения биологических макромолекул в центробежном поле. Данный метод позволяет получать данные о массе, форме и размерах молекул, находящихся в относительно небольших объемах образца. В повседневной практике работы в лаборатории чаще всего встречается препаративное центрифугирование.

Препаративные лабораторные центрифуги , в свою очередь, подразделяются на группы по назначению: препаративные ультрацентрифуги, центрифуги общего назначения и скоростные центрифуги. Центрифуги общего назначения имеют самое большое практическое применение в медицинских лабораториях, имеют максимальную скорость до 6 тысяч об/мин. Основной особенностью данного вида приборов является их относительно большая емкость – до 6 литров, что позволяет использовать для центрифугирования не только центрифужные пробирки объемом до 100 мл, но и емкости до 1.25 литра. Во всех центрифугах общего назначения роторы жестко крепятся на валу привода, поэтому центрифугируемые емкость должны быть довольно точно уравновешены. Чтобы избежать поломки, не следует загружать в ротор нечетное количество пробирок, при неполной загрузке емкость следует размещать друг напротив друга.

Скоростные центрифуги имеют предельную скорость 25 тыс. об/мин и ускорение до 89 тыс g. Камеру, в которой находится ротор и центрифугирумеые образцы, оснащают системой охлаждения для предотвращения нагревания, возникающего от трения при вращении ротора на больших скоростях. Обычно, такие центрифуги могут работать с объемом до 1.5 литра и оснащаются угловыми роторами или роторами со сменными стаканами.

Препаративные ультрацентрифуги разгоняются до 75000 об/мин и имеют максимальное центробежное ускорение 510 тыс g. Их оснащают холодильной и вакуумной установками, для предотвращения перегрева ротора от трения о воздух. Роторы для этих центрифуг изготавливают из высокопрочных титановых или алюминиевых сплавов. Вал ультрацентрифуг, в отличие от скоростных и препаративных, делается гибким для уменьшения вибрации при нарушении равновесия ротора. Емкости в роторе должны быть тщательно уравновешены с точностью до одной десятой грамма.

Помимо фильтрования, разделение смеси жидкого и твердого веществ возможно также путем центрифугирования, т. е. разделения веществ в приборах, называемых центрифугами.

Применение центрифуги основано на использовании центробежной силы . При быстром вращении (центрифугировании) взвешенные в жидкости твердые частицы (с большей" плотностью, чем плотность жидкости) под дейт ствием развивающейся при вращении центробежной силы отбрасываются от центра и таким путем отделяются от жидкости.


Рис. 407. Аппарат Тиссена для микроаналитических работ

Рис. 408. Ручная центрифуга

Центрифуги бывают: открытые и закрытые, с ручным и механическим приводом. Основной частью открытой ручной центрифуги (рис. 408) является вертикально поставленная вращающаяся ось, перпендикулярно которой на верхнем конце ее прикреплена планка с подвижно укрепленными двумя (или четырьмя) металлическими,гильзами. В эти гильзы вставляют специальные сужен-, ные книзу пробирки (рис. 409) с жидкостью, из которой нужно удалить взвешенные частицы,

На дно гильзы кладут кусочек ваты, «чтобы избежать прямого соприкосновения стекла с металлом. Когда пробирки вставлены в гильзы, центрифугу приводят в движение и через некоторое время (зависящее от вязкости жидкости, размеров взвешенных частиц и разности плотностей) происходит отделение взвешенных твердых частиц от жидкости, после чего центрифугу останавливают. На дне пробирки собирается плотный осадок твёрдого вещества, над которым находится чистая жидкость.

Закрытые центрифуги (рис. 410) в зависимости от величины содержат различное количество гильз, от 2 до 12 и больше, расположенных симметрично на одинаковом расстоянии друг от друга и от оси центрифуги.

Механические закрытые центрифуги (рис. 410, б) более удобны, чем ручные (рис. 410, а). Они дают обычно 2000- 3000 об/мин, позволяют достигнуть более совершенного разделения жидкости и твердого вещества.

Пробирки для центрифуг после наполнения жидкостью должны иметь одинаковую массу. Там, где центрифугой приходится пользоваться часто, рекомендуется иметь специальные весы, приспособленные для взвешивания (вернее, тарирования) пробирок. В указанных весах чашки подвешивают к коромыслу при помощи стержней, прикрепленных к центру чашек. На этих стержнях имеются кольца, в которые вставляют пробирки.

Укрепив пробирки, сперва наливают жидкость, подлежащую центрифугированию, в одну пробирку (при помощи, например, пипетки), а затем во вторую, добиваясь уравновешивания чашек.

Никогда не следует наливать в пробирки слишком много жидкости; пробирки наполняют так, чтобы расстояние от края до уровня жидкости было не меньше 10 мм.

Когда нужно уравновесить много пробирок, целесообразно применять следующий прием. Уравновесив первую пару пробирок, одну из них вынимают и помещают в гнездо центрифуги, а другую оставляют на весах; эта последняя пробирка будет служить эталоном для остальных в освободившееся на весах место вставляют другую пробирку, уравновешивают с эталоном и убирают. Целесообразно также предварительно наполнить пробирки (взяв количество жидкости несколько меньше, нужного) и уже при уравновешивании добавлять необходимое количество жидкости. Такой прием ускоряет работу.


Рис. 409. Пробирки для центрифуг.

Уравновешенные пробирки вставляют в гнезда центрифуги.

Центрифугу следует пускать не сразу на полный ход, а постепенно. Это относится как к ручным, так и к ме* ханическим центрифугам.



Рис. 410. Закрытые центрифуги: а - с ручным приводом; б - с электромотором.

Механические центрифуги для регулирования ско--рости имеют соответствующие приспособления. Так, электрические центрифуги снабжены реостатами для постепенного включения на полное число оборотов. У центрифуг, приводимых в движение от водяной турбины, постепенность нарастания скорости движения достигается регулированием струи воды. Чем осторожнее было проведено включение, тем надежнее работает центрифуга.

За центрифугой следует постоянно наблюдать; недопустимо загрязнение ее, в особенности движущихся частей. Металлические гильзы должны легко и свободно поворачиваться. Шестерни, приводящие во вращение центрифугу, должны иметь легкий ход; их нельзя смазывать такими смазками, которые могут загустеть. Ось центрифуги также должна быть в порядке и всегда чистой.

При неосторожном обращении с центрифугами, особенно ручными, можно согнуть ось и этим вывести.центрифугу из строя.

После выключения центрифуге дают остановиться самор и только после этого вынимают пробирки.

В последнее время начинают приобретать все большее распространение так называемые суперцентрифуги, дающие до 40 000 об/мин (рис. 411).


Рис. 411 суперцентрифуга

Такие центрифуги особенно удобны для центрифугирования всякого рода вязких растворов, например лаков, тонких дисперсий, а также эмульсий.

Жидкость, подлежащая суперцен-трифугированию, поступает в патрубок1, расположенный в Нижней части аппарата. Затем жидкость выливается в рабочий цилиндр 2, вращающийся со скоростью до 40 ООО об/мин, в котором происходит отделение бйлее тяжелых частиц, взвешенных в жидкости. Жидкость постепенно поднимается по цилиндру 2 вверх до разделителя 5, и если разрушают эмульсию, то более легкая жидкость вытекает по стоку 8, а более тяжелая - по стоку 4. При отделении твердых частиц с плотностью больше единицы жидкость вытекает по стоку 3. На внутренней стенке рабочего цилиндра откладыкается отделяемый твердый осадок. Суперцентрифуга. Время от времени суперцентрифугу останавливают, извлекают рабочий цилиндр 2, очищают его от осддка и, снова поставив на место, продолжают работу. Весь процесс очистки рабочего цилиндра, от момента остановки до момента нового пуска суперцентрифуги, занимает не более 15 мин. Если приходится очищать сравнительно большие количества жидкости, то пользуются тремя8 суперцентрифугами: одна - работает, Другую - очищают, третья - в резерве,

ЦЕНТРИФУГИРОВАНИЕ

разделение в поле центробежных сил жидких дисперсных систем с частицами размером более 100 нм. Используют для выделения составляющих фаз (жидкая - фугат или фильтрат, твердая - осадок) из двухкомпонентных ( , эмульсии) и трехкомпонентных (эмульсии, содержащие твердую фазу) систем.

Методы и аппаратура. Различают два метода Ц.: центробежное и фильтрование. Ц. проводят в центробежных машинах - центрифугах и жидкостных центробежных сепараторах. Осн. рабочий орган этих машин - осесимметричная оболочка, или ротор (барабан), вращающийся с большой частотой с -1 , благодаря чему создается поле центробежных сил до 2 х 10 4 g в промышленных и до 35 х 10 4 gв лабораторных машинах (g - ускорение своб. падения в гравитац. поле). В зависимости от метода Ц. осуществляется в сплошных (осадительных; рис. 1, а)или перфорированных (покрытых фильтрующим материалом; рис. 1, б)роторах.

Рис. 1. Роторы машин для центробежного осаждения (а) и фильтрования ( б): С - суспензия, Ф - фугат (фильтрат), О - осадок; пояснение в тексте, r ж -радиус свободной поверхности жидкости.

Ц. характеризуется рядом технол. параметров, определяющих качество процесса и его кинетику. К ним относятся: фактор разделения (r рт - макс. внутр. радиус ротора), отражающий интенсивность центробежного поля; скорость Ц. - производительность центробежной машины по исходной жидкой системе или составляющим ее компонентам; унос - содержание твердой фазы в фугате (фильтрате); насыщенность осадка жидкой фазой (в т. ч. осадка) после Ц.; крупность разделения - миним. размер частиц, улавливаемых при центробежном осаждении.
Кинетика Ц. зависит от мн. факторов, классифицируемых на две группы. Факторы первой группы определяются физ.-хим. cв-вами разделяемой системы (разность плотностей фаз, гранулометрич. состав твердой фазы, жидкой фазы, уд. сопротивление осадка при фильтровании). Факторы второй группы, обусловленные конструкцией и частотой вращения ротора центробежной машины (структура внутрироторного потока, его гидродинамика и поле скоростей), оказывают решающее влияние на центробежное осаждение и отчасти на центробежное фильтрование; в свою очередь гидродинамич. режим зависит от производительности машины. Мат. описание потока дается ур-ниями Навье - Стокса и неразрывности (см. Гидромеханические процессы), к-рые составляются с учетом геометрии ротора и граничных условий; решение зачастую находится методами подобия теории.
Центробежное осаждение включает , сгущение, а также осадительное Ц. Осветление - удаление твердой фазы из суспензий с содержанием частиц не более 5% по объему; используют для очистки, напр., нефтяных масел. Сгущение - процесс, при к-ром частицы дисперсной фазы группируются в относительно малом объеме дисперсионной среды; позволяет осуществлять суспензий (напр., водная суспензия каолина). Осадительное Ц. -разделение суспензий с содержанием твердой фазы более 5-10% по объему; применяют преим. для обезвоживания твердых компонентов (напр., CaSO 4).
При центробежном осаждении движение твердых частиц происходит под действием центробежной силы (d - диаметр частицы;- разность плотностей твердой и жидкой фаз; r - расстояние от частицы до оси вращения ротора) и силы сопротивления жидкой среды S. Соотношение этих сил определяет скорость осаждения w. При ламинарном режиме, характерном для осветления, сила Sвыражается законом Стокса: и где динамич. вязкость жидкой фазы. Для турбулентного режима при осаждении крупных частиц высококонцентрир. суспензий сила Sнаходится из ур-ния:(- коэф. лобового сопротивления; р ж - плотность жидкой фазы). Гидродинамика потока определяет время пребывания частиц в роторе, aw- время осаждения; сопоставление этих величин позволяет найти крупность разделения.
Центробежное фильтрование происходит с образованием или без образования осадка на фильтровальной перегородке, а также при одновременном протекании в ее зонах обоих процессов; наиб. эффективно для получения осадков с миним. влажностью. Процесс принято делить на три периода: образование осадка, удаление из него избыточной жидкости и удаление жидкости, удерживаемой межмол. силами (мех. осадка). Первый период охватывает центробежное осаждение и фильтрование через слой образовавшегося осадка. Для расчета кинетики процесса используют закон Дарси - Вейсбаха; движущая сила (перепад давления ) определяется центробежным полем, действующим на суспензию: где - плотность суспензии; r ж - радиус своб. пов-сти жидкости (рис. 1, б). На оказывает влияние проскальзывание жидкости над слоем осадка. Период может протекать при разл. режимах; наиб. характерны режимы при постоянных и производительности по суспензии. Второй и третий периоды зависят от большого числа факторов, связанных с уплотнением осадка, формой его поровых каналов и др.; построение их мат. моделей крайне затруднено.
Из-за сложности Ц. производительность центробежных машин оценивают чаще всего путем моделирования по т. наз. индексу производительности подразумевая под Fв первом приближении площадь боковой пов-сти ротора. Физ. смысл заключается в том, что по аналогии с осаждением в отстойниках производительность центрифуг также пропорциональна площади рабочей пов-сти, однако за счет центробежного поля увеличивается на фактор Fr. В зависимости от конструктивных особенностей ротора для машин каждого типа определяется своим ур-нием и используется при перерасчете производительности с одного типоразмера центрифуги на иной. Моделирование осуществляется при геом. подобии роторов и идентичности определяющих критериев процесса.

Рис. 2. Центрифуга непрерывного действия: а - осадительная шнековая; б - фильтрующая шнековая; в - с пульсирующей выгрузкой осадка; г - инерционная; д - вибрационная; е - прецессионная; 1 - ротор; 2 -механизм выгрузки.

По сравнению с др. методами разделения ( , фильтрование) Ц. позволяет получать осадки с меньшей влажностью. При центробежном осаждении в отличие от фильтрования удается разделять суспензии (напр., в произ-вах лакокрасочных материалов) с тонкодисперсной твердой фазой, миним. размер частиц к-рой составляет 5-10 мкм. Важное достоинство Ц. - возможность его проведения в аппаратуре относительно малых объемов; недостаток - высокая энергоемкость.
Пром. центрифуги различают: по принципу разделения -осадительные, фильтрующие и комбинированные; по конструктивному исполнению - преим. по расположению ротора и системе выгрузки осадка (шнек; толкатель, или поршень; с использованием сил инерции); по организации процесса -периодического или непрерывного действия.
Ц. в машинах периодич. действия осуществляется циклически в роторах с иногда регулируемой ножевой или ручной выгрузкой осадка.
На рис. 2 представлены принципиальные схемы разделения суспензий в машинах непрерывного действия. Осадительные шнековые центрифуги (рис. 2,а) предназначены для разделения суспензий с нерастворимой твердой фазой (напр., полистирол, осадки сточных вод), обезвоживания кристаллич. и зернистых продуктов, классификации (напр., ТiO 2), сгущения (напр., активный ил). Процесс происходит в сплошном роторе; осадок непрерывно выгружается шнеком, вращающимся с частотой Для этих центрифуг Fr600-3500.
Фильтрующие шнековые центрифуги (рис. 2, б)распространены при разделении высококонцентрир. суспензий с крупнозернистой твердой фазой (размер частиц более 0,2 мм, напр. глауберова соль). Ц. производится в каркасном роторе с листовым ситом, через к-рое отводится фильтрат. Осадок выводится из ротора шнеком под действием разности частот вращения Высокие значения Fr (1200-1800) позволяют получать продукты с миним. влажностью.
Фильтрующие центрифуги с пульсирующей выгрузкой осадка (рис. 2, в)применяют в осн. для тех же целей, что и фильтрующие шнековые. Благодаря наличию толстого слоя осадка на колосниковом сите одно- или многокаскадного ротора удается осуществлять глубокую промывку продукта (напр., КС1, сахар-рафинад). Осадок выгружают посредством толкателя, совершающего возвратно-поступат. движение с линейной скоростью v; Fr300-700.
В инерционных центрифугах (рис. 2, г) осадок из ротора удаляется за счет составляющей центробежного поля; в вибрационных центрифугах (рис. 2, д) - благодаря вибрации ротора вдоль оси со скоростью v; впрецессионных центрифугах (рис. 2, е) - вследствие гироскопич. движения ротора с частотами вращения и Машины всех типов используют для центробежного фильтрования высококонцентрир. суспензий с крупнокристаллич. твердой фазой (напр., уголь гидродобычи, сахарный песок).
Разновидность Ц. разделение суспензий и эмульсий в центробежных сепараторах. Их роторы снабжены пакетом конич. тарелок, установленных по отношению друг к другу с небольшим зазором (0,4-1,5 мм). Высокая степень разделения достигается благодаря его протеканию в тонком слое межтарелочного зазора при ламинарном режиме. Тонкодисперсные суспензии (присадки к маслам, гормональные препараты, и др.), содержащие 0,5-4,0% по объему мех. примесей, осветляются в сепараторах-очистителях (рис. 3, а). Твердая фаза, собираясь в шламовом пространстве ротора, периодически удаляется из него при открытии днища (поршня). Центробежное сгущение (напр., кормовые и пекарские дрожжи) производится в сепараторах-сгустителях (рис. 3, б). Сгущенная фракция непрерывно выводится через сопла по периферии ротора, а осветленная - через верх. зону. Для разделения эмульсий (напр., нефтяные шламы, ) применяют сепараторы-разделители (рис. 4), в роторах к-рых предусмотрен пакет тарелок с отверстиями, расположенными на границе раздела тяжелой и легкой жидкостей; компоненты (фугаты Ф 1 и Ф 2) выводятся раздельно. При наличии в эмульсии твердой фазы используют универсальные роторы с выгрузкой осадка в соответствии с рис. 3, аили вручную.
По аналогии с центрифугами разделяющая способность сепараторов оценивается индексом производительности

Где z - число тарелок в пакете;- половина угла конуса тарелки при вершине; R макс, R мин - наружный и внутр. радиусы тарелки. Моделирование процессов в сепараторах осуществляется, как и в центрифугах, по индексу производительности

Рис. 3. Сепараторы для разделения суспензий: на рис. совмещены сепаратор-очиститель (а)и сепаратор-сгуститель ( б); 1 - ротор; 2 - пакет тарелок; 3 - подвижное днище.

Рис. 4. Сепаратор для разделения эмульсий: 1 - ротор; 2 - пакет тарелок; Ф 1 и Ф 2 - фугаты; Э - эмульсия.

Для изучения центрифугальных процессов в лаборатории используют модели пром. центрифуг и сепараторов с диаметром ротора 150-250 мм, а также т. наз. стаканчиковые центрифуги (ротор состоит из ряда пробирок - стаканчиков). Эти малогабаритные образцы позволяют экспериментально определять не только производительность пром. машин, но и возможность выгрузки осадков из роторов, конечную влажность продукта, унос. Исследования проводятся с небольшими объемами продуктов на спец. стендах. Стаканчиковые центрифуги используют для оценки времени осаждения частиц при разл. Fr.
Совр. центрифугальная техника имеет тенденцию к росту частот вращения роторов, повышению производительности, снижению уд. металле- и энергоемкости. Производительность машин возрастает благодаря совершенствованию гидродинамики роторов, увеличению их длины (в осадительных центрифугах) и высоты пакета (в сепараторах). Возрастают диаметры роторов в крупнотоннажных машинах; создаются ком-бинир. роторы, в конструкциях к-рых совмещаются разл. методы Ц. Внедряются микропроцессорные системы управления и регулируемые приводы, обеспечивающие Ц. в оптим. режимах.
Ц. широко распространено в технол. процессах хим.-лесного комплекса, пищевых, текстильных и др. произ-вах. Ц. играет важную роль в решении экологич. проблем (очистка коммунальных и пром. стоков), в ресурсосберегающих технологиях.

Лит.: Соколов В. И., Центрифугирование, М., 1976; Шкоропад Д. Е., Новиков О. П., Центрифуги и сепараторы для химических производств, М., 1987.

И. А. Файнерман.

Ультрацентрифугирование - метод разделения и исследования частиц размером менее 100 нм (макромолекул органелл животных и растит. клеток, вирусов и др.) в поле центробежных сил. Позволяет разделять смеси частиц на фракции или индивидуальные компоненты, находить мол. массу и ММР полимеров, плотность их сeльватов. Дает возможность оценивать форму и размеры макромолекул в р-ре (см. Дисперсионный анализ), влияние статич. давления на стабильность частиц, параметры взаимод. типа ассоциация - макромолекул друг с другом или с молекулами низкомол. компонентов и ионами, влияние природы р-рителя на кон-формации макромолекул и др.
Осуществляется с помощью ультрацентрифуг, снабженных полыми роторами, полости к-рых бывают замкнутыми и проточными. Различают скоростное и равновесное . В первом случае частицы движутся по радиусу ротора соотв. своим коэф. седиментации, в первом приближении пропорциональным массе частицы, разности плотностей частицы и жидкости при частицы перемещаются от оси вращения ротора к периферии (седиментируют), при - в сторону оси вращения (флотируют). При равновесном ультрацентрифугировании перенос частиц по радиусу продолжается до тех пор, пока сумма хим. потенциала и молярной потенциальной энергии в каждой точке системы не станет постоянной величиной, после чего распределение частиц перестанет изменяться.
Т. наз. аналит. ультрацентрифугирование применяется при анализе р-ров, дисперсий и производится посредством аналит. ультрацентрифуг, снабженных роторами с оптически прозрачными замкнутыми резервуарами и оптич. системами для определения концентрации или ее градиента по радиусу ротора во времени; исследуемые объемы - от 0,01 до 2 мл при массе частиц от неск. мкг до мг. Препаративное ультрацентрифугирование используют для выделения компонентов из сложных смесей; объем жидкости и масса исследуемого образца м. б. на неск. порядков больше, чем при аналит. ультрацентрифугировании. Центробежные ускорения в ультрацентрифугах достигают 5 x 10 5 g. Первая аналит. ультрацентрифуга была создана Т. Сведбергом (1923; 5 x 10 3 g).

Лит.: Боуэн Т., Введение в ультрацентрифугирование, пер. с англ., М., 1973.

А. Д. Морозкин.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Синонимы :

Смотреть что такое "ЦЕНТРИФУГИРОВАНИЕ" в других словарях:

    Разделение неоднородных систем (напр., жидкость твердые частицы) на фракции по плотности при помощи центробежных сил. Центрифугирование осуществляется в аппаратах, называемых центрифугами. Центрифугирование применяется для отделения осадка от… … Википедия

    Разделение неоднородных систем (например, жидкость твёрдое тело) с помощью центробежных сил; применяется для разделения суспензий, осветления загрязнённых жидкостей, классификации шламов по крупности твёрдых частиц и т.д.; возможности разделения… … Термины атомной энергетики

    центрифугирование - Ндп. фугование фуговка Разделение жидких неоднородных систем в роторах под действием центробежных сил. [ГОСТ 16887 71] [ГОСТ Р 51109 97] Недопустимые, нерекомендуемые фугованиефуговка Тематики промышленная чистотафильтрование, центрифугирование,… … Справочник технического переводчика

    Центрифугирование - – способ формования изделий путем использования цен­тробежных сил, отжимающих из смеси часть воды затворения и вовлеченный воздух. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ и м. А. А. Гвоздева,… … Энциклопедия терминов, определений и пояснений строительных материалов

    Разделение неоднородных смесей (суспензий, эмульсий, шламов) на составные части под действием центробежной силы. Осуществляется в центрифугах. Применяется в научных исследованиях, химической, пищевой, горно рудной и др. отраслях промышленности … Большой Энциклопедический словарь

    Способ разделения неоднородных, дисперсных жидких систем в поле центробежных сил (центрифугатном поле). Обладает более высокой способностью к разделению, чем отжимание, отстаивание и фильтрование. Ц. осуществляют в центрифугах, принцип работы к… … Словарь микробиологии

    Сущ., кол во синонимов: 1 ультрацентрифугирование (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Центрифугирование - * цэнтрыфугаванне * centrifugation использование сил, создаваемых центрифугой (см.), для разделения молекул в жидкой среде. Существует несколько типов Ц.: в градиенте плотности, дифференциальное, в сахарозном градиенте … Генетика. Энциклопедический словарь - разделение неоднородных систем (напр., жидкость твёрдое тело) при помощи центробежных сил. Применяется для разделения суспензий, осветления загрязн. жидкостей, гидравлич. классификации шламов по крупности твёрдых частиц и т. д. Осуществляется в… … Большой энциклопедический политехнический словарь

Книги

  • Принципы и методы биохимии и молекулярной биологии , Дерек Гордон , В учебном издании, написанном авторами из Великобритании, изложены основы теоретических концепций биохимии и молекулярной биологии в приложении к современным методам исследований, среди… Категория: Медицина Серия: Методы в биологии (Лаборатория знаний) Издатель: Лаборатория знаний , электронная книга (fb2, fb3, epub, mobi, pdf, html, pdb, lit, doc, rtf, txt)

Центрифугирование - разделение неоднородных систем (напр., жидкость - твердые частицы) на фракции по плотности при помощи центробежных сил. Приборы, применяемые для этой цели, называют центрифугами. Основной частью центрифуги является ротор с монтированными в нем гнездами для центрифужных пробирок. Ротор вращается с большой скоростью, вследствие чего создаются значительные по величине центробежные силы, под действием которых происходит разделение механических смесей, например осаждение взвешенных в жидкости частиц.

Центрифугирование применяется для отделения осадка от раствора, для отделения загрязненных жидкостей, производится также центрифугирование эмульсий (напр., сепарирование молока). Центрифугирование бетона применяется для увеличения его прочности. В клинических и санитарно-гигиенических лабораториях центрифугирование используют для отделения эритроцитовот плазмы крови,сгустков кровиотсыворотки, плотных частиц от жидкой части мочи и т. д.

Конструктивные особенности центрифуг заключаются в способе крепления к валу барабана и в пространственном его расположении. Все конструкции должны обеспечить, прежде всего, хорошую устойчивость ротора центрифуги. Поскольку вал приводит во вращение большую массу, он должен быть особенно устойчивым. Скорость вращения вала не должна равняться его критической скорости вращения, а должна быть больше или меньше ее. В первом случае вал называют гибким, во втором жёстким.

Препаративное центрифугирование - проводят с целью получения определенных компонентов из биологического материала для дальнейшего биохимического анализа. Такими компонентами могут быть клетки, их органеллы (митохондрии, рибосомы, ядра и др.) и макромолекулы (белки, ДНК и др.).

Аналитическое центрифугирование - проводят для выявления характеристик однородного материала, например, макромолекул. Материал центрифугируют, вследствие чего под контролем оптических систем происходит осаждение частиц. При этом можно определить их однородность, молекулярную массу, структуру, так как форма и масса частиц оказывают влияние на скорость осаждения. Проводя расчеты по стандартным формулам, можно вычислить эти параметры и составить характеристики исследуемого материала.

Ультрацентрифуга - прибор для разделения частиц размером менее 100 нм (коллоидов, субклеточных частиц, макромолекул белков, нуклеиновых кислот, липидов, полисахаридов, синтетических полимеров и пр.), взвешенных или растворенных в жидкости. Это достигается вращением ротора, создающего центробежное поле с ускорением, на много порядков превышающим ускорение силы тяжести.

Аналитическое ультрацентрифугирование используют для исследования гомогенности (чистоты) препаратов биополимеров (белков, нуклеиновых кислот, полисахаридов), а также для определения констант седиментации, молекулярной массы, констант ассоциации и размеров макромолекул. Ультрацентрифугирование применяется в медицине при клинической диагностике, для приготовления кровезаменителей и т.п.

Потребность разделения смеси, состоящей из частиц различного размера, на более однородные фракции существует во многих областях. Одним из наиболее эффективных, простых и бюджетных способов, позволяющих справить с поставленной задачей, является центрифугирование. Как правило, для его реализации требуются специальные аппараты, лабораторная посуда, а также вспомогательное оборудование, такое как сушильные шкафы .

Классификация методов

В настоящее время существуют три вида центрифугирования:

  • фильтрование;
  • отстаивание;
  • осветление.

Фильтрование проводится в центрифугах с дырчатыми барабанами, внутрення поверхность которых покрыта тканью. В процессе вращения рабочей полости, происходит осаждение частиц твердой фазы на материю: постепенное уплотнение слоя и его последующее удаление.

Центробежное отстаивание в некоторой степени отличается от фильтрования. Для его реализации используются более сложные конструкции. Неоднородная смесь постепенно поступает в рабочую полость, совершающую вращательные движения вокруг своей оси. В результате твердая фаза осаждается на стенки барабана, а жидкая - вытесняется за его пределы регулярно поступающей из нижнего отверстия неоднородной смесью.

Центробежное осветление позволяет разделять более тонкие коллоидные растворы. В процессе вращения барабана происходит образование градиента плотности. Причем более легкие жидкости скапливаются в центре, а более тяжелые - на периферии.

Применение центрифугирования

Благодаря простоте реализации процесса, данный способ разделения растворов нашел применение в следующих областях:

  • промышленности;
  • медицине;
  • науке.

Метод на протяжении многих лет активно используется в процессе добычи нефти для повышения ее качества путем удаления воды из состава. В медицине с его помощью проводят такие операции, как:

  • выделение тромбоцитарной массы;
  • получение очищенных образцов для плазмафареза;
  • синтез эритроцитарной массы.

Кроме того, центрифугирование в совокупности с современным оборудованием, таким как шкафы сушильные , позволяет подготовить кровь для переливания.