Бухгалтерский учет

Окислительно-восстановительные реакции и реакции, протекающие без изменения степени окисления атомов. Внеклассный урок - окислительно-восстановительные реакции Реакции протекающие изменением степени окисления

ОПЫТ 1 . В две пробирки внесите по 2-3 капли раствора H 2 SO 4 . В одну из них добавить 2-3 капли раствора барий хлорида, а в другую – металлический цинк. Что представляет собой осадок, выпавший в первой пробирке? Какой газ выделяется во второй пробирке?

ОПЫТ 2 . Внесите в пробирку 2-3 капли раствора HCl и 4 капли фенолфталеина. Отметив полученный цвет индикатора, добавляйте по каплям раствор натрий гидроксид до появления малиновой окраски.

В другую пробирку внесите 2-3 капли концентрированной HCl и несколько кристаллов KMnO 4 . Какие продукты образуются в результате реакции?

ОПЫТ 3. В одну пробирку внесите 1 микрошпатель порошка свинец (II) карбоната, а в другую столько же свинец (II) нитрата. Закрепив пробирки наклонно в металлическом штативе, нагрейте их в пламени спиртовки. Наблюдайте выделение газа в обеих пробирках.

ФОРМА ОТЧЕТА:

1. Напишите уравнения реакций для каждого из этих опытов.

2. Укажите, какие из них относятся к окислительно-восстановительным?

3. Какие вещества являются окислителями и восстановителями?

Лабораторная работа № 2

Реакции окисления-восстановления без участия среды

ОПЫТ 1. В пробирку с 3-4 каплями раствора соляной или серной кислоты опустите металлическое железо. Отметьте выделение газа.

ОПЫТ 2. В пробирку с 5-6 каплями раствора CuSO 4 опустите металлический цинк. Как изменились поверхность цинка и цвет раствора?

ФОРМА ОТЧЕТА:

Напишите уравнения реакций и укажите окислитель и восстановитель.

Лабораторная работа № 3

Влияния рН среды на протекание ов реакций

ОПЫТ 1. В три пробирки внесите по 3-4 капли раствора KMnO 4 . В первую пробирку добавьте 2-3 капли раствора H 2 SO 4 (рН < 7), во вторую – 2-3 капли H 2 O (рН ≈ 7), а в третью – 2-3 капли конц. раствора NaOH (рН > 7). Затем в каждую из пробирок внесите несколько кристаллов KNO 2 или Na 2 SО 3 . Тщательно перемешайте содержимое пробирки стеклянными палочками. Отметьте изменение окраски растворов во всех пробирках.

ФОРМА ОТЧЕТА:

1. Напишите уравнения соответствующих реакций, учитывая, что фиолетовая окраска характерна для иона MnO 4 ˉ, зеленая – для иона MnO 4 2 ‾, бесцветная – для иона Mn 2+ , осадок бурого цвета – MnO 2 .

2. Расставьте коэффициенты в уравнениях выполненных реакций методом ионно-электронных схем (метод полуреакций).

Лабораторная работа № 4

Окислительно-восстановительные реакции, в которых окислитель и восстановитель выполняют одновременно функцию среды

ОПЫТ 1. Внести в пробирку 5-8 капель H 2 SO 4 конц. и кусочек цинка. Осторожно нагрейте содержимое пробирки и определите выделение серы (IV) оксида по его резкому характерному запаху. Через 3-5 минут появятся коллоидная сера и запах сероводорода.

ФОРМА ОТЧЕТА:

1. Запишите соответствующие уравнения реакций и расставьте коэффициенты методом полуреакции.

2. В каждом случае укажите, количество вещества (моль) серной кислоты участвовавшей в реакции.

Лабораторная работа № 5

Реакции диспропорционирования

ОПЫТ 1. В пробирку с 5-6 каплями калий нитрита добавьте 2-3 капли раствора серной кислоты. Наблюдайте выделение бурого газа.

ФОРМА ОТЧЕТА:

1. Напишите уравнение реакции взаимодействия калий нитрита с серной кислотой.

2. Напишите уравнение реакции разложения образовавшейся азотистой кислоты с получением оксидов азота NO и NO 2 .

3. Какая из этих реакций является окислительно-восстановительной?

4. Укажите окислитель и восстановитель.

5. ХОД ЗАНЯТИЯ:

Окислительно-восстановительными называются реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ. Для составления уравнений ОВР используют два метода: 1) метод электронного баланса; 2) электронно-ионный метод (метод полуреакций).

Электронно-ионный метод применяется для составления уравнений ОВР, протекающих в водных растворах. Этот метод основан на составлении двух полуреакций: для окисления восстановителя и восстановления окислителя, с последующим суммированием их в общее ионное уравнение. При использовании этого метода записывают полуреакции с ионами или молекулами сопряженных окисленной и восстановленной форм в том виде, как они существуют в растворе.

Метод полуреакций учитывает реально существующие в растворе ионы и молекулы, (слабые электролиты, газы и малорастворимые вещества записывают в молекулярном виде, сильные электролиты – в виде ионов).

Метод полуреакций учитывает роль среды. Если реакция протекает в кислой среде, то в полуреакции могут быть включены только молекулы H 2 O и ионы водорода Н + . На каждый недостающий атом кислорода в одной из частей полуреакции нужно добавить по одной молекуле воды, тогда во вторую часть полуреакции пойдет удвоенное число ионов водорода.

Составим уравнение реакции окисления натрий сульфита калий перманганатом в кислой среде:

5 Na 2 SO 3 + 2 KМnO 4 + 3 H 2 SO 4  5 Na 2 SO 4 + 2 MnSO 4 + K 2 SO 4 + 3 H 2 O

SO 3 2 ˉ + H 2 O – 2 ē → SO 4 2 ˉ + 2 H + 5

MnO 4 ˉ + 8 H + + 5 ē → Mn 2+ + 4 H 2 O 2

5SO 3 2 ˉ + 5H 2 O + 2MnO 4 ˉ + 16H + → 5SO 4 2 ˉ + 10H + + 2Mn 2+ + 8H 2 O

После приведения подобных членов, получим краткое ионное уравнение реакции:

5 SO 3 2 ˉ + 2 MnO 4 ˉ + 6 H + → 5 SO 4 2 ˉ + 2 Mn 2+ + 3 H 2 O

По ионному уравнению расставляют коэффициенты в молекулярном уравнении химической реакции.

Если реакция протекает в щелочной среде, то в полуреакции могут быть включены только молекулы воды и ионы ОНˉ. На каждый недостающий в одной из частей полуреакции атом кислорода нужно добавить по два иона ОНˉ, тогда во вторую части реакции пойдет уменьшенное в два раза число молекул воды.

Na 2 SO 4 + 2 KМnO 4 + 2 KOH Na 2 SO 4 + 2 K 2 MnO 4 + H 2 O

SO 3 2 ˉ + 2 OHˉ – 2 ē → SO 4 2 ˉ + H 2 O 1

MnO 4 ‾ + 1 ē → MnO 4 2 ˉ 2

SO 3 2 ˉ + 2 OHˉ + 2 MnO 4 ˉ → SO 4 2 ˉ + H 2 O + 2 MnO 4 2 ˉ

Если реакция протекает в нейтральной среде, то в полуреакции могут быть включены молекулы воды и ионы Н + ,ОНˉ.

Таким образом, при составлении уравнений ОВР методом полуреакций следует придерживаться такого порядка:

1) составить схемы полуреакций окисления и восстановления с указанием исходных и образующихся в условиях реакции ионов и молекул;

2) уравнять число атомов каждого элемента в левой и правой части полуреакции;

3) уравнять суммарное число зарядов в обеих частях каждой полуреакции, для чего прибавить или отнять необходимое число элетронов;

4) подобрать множители для полуреакций так, чтобы число электронов, отдаваемых при окислении, было равно числу электронов, принимаемых при восстановлении;

5) сложить уравнения полуреакций и написать суммарное ионное уравнение;

6) расставить коэффициенты в молекулярном уравнении реакции.

6. вопросы ДЛЯ САМОконтроля знаний:

1. Окислительно-восстановительные реакции. Важнейшие окислители и восстановители.

2. Типы ОВР (межмолекулярные, внутримолекулярные, диспропорционирования). Методы расстановки коэффициентов в уравнениях ОВР.

3. Влияние кислотности среды на протекание ОВР. Написать уравнения реакций взаимодействия KMnO 4 с KNO 2 в различных средах (кислой, нейтральной и щелочной), расставить коэффициенты в соответствующих уравнениях реакций методом полуреакций.

4. Закончите уравнения следующих ОВ реакций и расставьте коэффициенты методом полуреакции:

а) KMnO 4 +FeSO 4 + H 2 SO 4 →

б) KMnO 4 +K 2 SО 3 + KOH →

в) KMnO 4 + H 2 O 2 + H 2 SO 4 →

г) K 2 Cr 2 O 7 + H 2 S + H 2 SO 4 →

д) K 2 Cr 2 O 7 + KI + HCl →

7. ЛИТЕРАТУРА

ОСНОВНАЯ:

1. Конспект лекций.

2. Общая химия. Биофизическая химия. Химия биогенных элементов: Учеб. для мед. спец. вузов / Ю.А. Ершов, В.А. Попков, А.С. Берлянд и др.; Под ред. Ю.А. Ершова. – М.: Высш. шк., 2005. – с. 131-139;

3. Ленский, А.С. Введение в бионеорганическую и биофизическую химию: Учебн. пособие для студ. мед. вузов / А.С. Ленский. − М.: Высш. шк, 1989. – с. 231-241.

ДОПОЛНИТЕЛЬНАЯ:

    Суворов, А.В.Общая химия. / А.В. Суворов, А.Б. Никольский. – СПб: Химия, 1994 г. – с. 271-287;

    Зеленин, К.Н. Химия. / К.Н. Зеленин. – СПб: Специальная литература, 1997 г. – с. 184-187.

Министерство здравоохранения Республики Беларусь

Учреждение образования

«Гомельский государственный медицинский университет»

Кафедра общей и биоорганической химии

Обсуждено на заседании кафедры ___________________

Протокол №_____________________________________

ОПРЕДЕЛЕНИЕ

Степень окисления - это количественная оценка состояния атома химического элемента в соединении, основанная на его электроотрицательности.

Она принимает как положительные, так и отрицательные значения. Чтобы указать степень окисления элемента в соединении нужно поставить сверху над его символом арабскую цифру с соответствующим знаком («+» или «-»).

Следует помнить, что степень окисления — величина, не имеющая физического смысла, так как не отражает реальный заряд атома. Однако это понятие весьма широко используется в химии.

Таблица степени окисления химических элементов

Максимальную положительную и минимальную отрицательную степень окисления можно определить с помощью Периодической таблицы Д.И. Менделеева. Они равны номеру группы, в которой расположен элемент, и разнице между значением «высшей» степени окисления и числом 8, соответственно.

Если рассматривать химические соединения более конкретно, то в веществах с неполярными связями степень окисления элементов равна нулю (N 2 , H 2 , Cl 2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na +1 I -1 , Mg +2 Cl -1 2 , Al +3 F -1 3 , Zr +4 Br -1 4 .

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Существуют элементы, для которых характерно только одно значение степени окисления (фтор, металлы IA и IIA групп и т.д.). Фтор, характеризующийся наибольшим значением электроотрицательности, в соединениях всегда имеет постоянную отрицательную степень окисления (-1).

Щелочные и щелочноземельные элементы, для которых свойственно относительно невысокое значение электроотрицательности, всегда имеют положительную степень окисления, равную соответственно (+1) и (+2).

Однако, имеются и такие химические элементы, для которых характерны несколько значений степени окисления (сера - (-2), 0, (+2), (+4), (+6) и др.).

Для того, чтобы легче было запомнить сколько и какие степени окисления характерны для конкретного химического элемента используют таблицы степеней окисления химических элементов, которые выглядят следующим образом:

Порядковый номер

Русское / англ. название

Химический символ

Степень окисления

Водород / Hydrogen

Гелий / Helium

Литий / Lithium

Бериллий / Beryllium

(-1), 0, (+1), (+2), (+3)

Углерод / Carbon

(-4), (-3), (-2), (-1), 0, (+2), (+4)

Азот / Nitrogen

(-3), (-2), (-1), 0, (+1), (+2), (+3), (+4), (+5)

Кислород / Oxygen

(-2), (-1), 0, (+1), (+2)

Фтор / Fluorine

Натрий / Sodium

Магний / Magnesium

Алюминий / Aluminum

Кремний / Silicon

(-4), 0, (+2), (+4)

Фосфор / Phosphorus

(-3), 0, (+3), (+5)

Сера / Sulfur

(-2), 0, (+4), (+6)

Хлор / Chlorine

(-1), 0, (+1), (+3), (+5), (+7), редко (+2) и (+4)

Аргон / Argon

Калий / Potassium

Кальций / Calcium

Скандий / Scandium

Титан / Titanium

(+2), (+3), (+4)

Ванадий / Vanadium

(+2), (+3), (+4), (+5)

Хром / Chromium

(+2), (+3), (+6)

Марганец / Manganese

(+2), (+3), (+4), (+6), (+7)

Железо / Iron

(+2), (+3), редко (+4) и (+6)

Кобальт / Cobalt

(+2), (+3), редко (+4)

Никель / Nickel

(+2), редко (+1), (+3) и (+4)

Медь / Copper

+1, +2, редко (+3)

Галлий / Gallium

(+3), редко (+2)

Германий / Germanium

(-4), (+2), (+4)

Мышьяк / Arsenic

(-3), (+3), (+5), редко (+2)

Селен / Selenium

(-2), (+4), (+6), редко (+2)

Бром / Bromine

(-1), (+1), (+5), редко (+3), (+4)

Криптон / Krypton

Рубидий / Rubidium

Стронций / Strontium

Иттрий / Yttrium

Цирконий / Zirconium

(+4), редко (+2) и (+3)

Ниобий / Niobium

(+3), (+5), редко (+2) и (+4)

Молибден / Molybdenum

(+3), (+6), редко (+2), (+3) и (+5)

Технеций / Technetium

Рутений / Ruthenium

(+3), (+4), (+8), редко (+2), (+6) и (+7)

Родий / Rhodium

(+4), редко (+2), (+3) и (+6)

Палладий / Palladium

(+2), (+4), редко (+6)

Серебро / Silver

(+1), редко (+2) и (+3)

Кадмий / Cadmium

(+2), редко (+1)

Индий / Indium

(+3), редко (+1) и (+2)

Олово / Tin

(+2), (+4)

Сурьма / Antimony

(-3), (+3), (+5), редко (+4)

Теллур / Tellurium

(-2), (+4), (+6), редко (+2)

(-1), (+1), (+5), (+7), редко (+3), (+4)

Ксенон / Xenon

Цезий / Cesium

Барий / Barium

Лантан / Lanthanum

Церий / Cerium

(+3), (+4)

Празеодим / Praseodymium

Неодим / Neodymium

(+3), (+4)

Прометий / Promethium

Самарий / Samarium

(+3), редко (+2)

Европий / Europium

(+3), редко (+2)

Гадолиний / Gadolinium

Тербий / Terbium

(+3), (+4)

Диспрозий / Dysprosium

Гольмий / Holmium

Эрбий / Erbium

Тулий / Thulium

(+3), редко (+2)

Иттербий / Ytterbium

(+3), редко (+2)

Лютеций / Lutetium

Гафний / Hafnium

Тантал / Tantalum

(+5), редко (+3), (+4)

Вольфрам / Tungsten

(+6), редко (+2), (+3), (+4) и (+5)

Рений / Rhenium

(+2), (+4), (+6), (+7), редко (-1), (+1), (+3), (+5)

Осмий / Osmium

(+3), (+4), (+6), (+8), редко (+2)

Иридий / Iridium

(+3), (+4), (+6), редко (+1) и (+2)

Платина / Platinum

(+2), (+4), (+6), редко (+1) и (+3)

Золото / Gold

(+1), (+3), редко (+2)

Ртуть / Mercury

(+1), (+2)

Талий / Thallium

(+1), (+3), редко (+2)

Свинец / Lead

(+2), (+4)

Висмут / Bismuth

(+3), редко (+3), (+2), (+4) и (+5)

Полоний / Polonium

(+2), (+4), редко (-2) и (+6)

Астат / Astatine

Радон / Radon

Франций / Francium

Радий / Radium

Актиний / Actinium

Торий / Thorium

Проактиний / Protactinium

Уран / Uranium

(+3), (+4), (+6), редко (+2) и (+5)

Примеры решения задач

ПРИМЕР 1

Ответ Будем поочередно определять степень окисления фосфора в каждой из предложенных схем превращений, а затем выберем верный вариант ответа.
  • Степень окисления фосфора в фосфине равна (-3), а в ортофосфорной кислоте - (+5). Изменение степени окисления фосфора: +3 → +5, т.е. первый вариант ответа.
  • Степень окисления химического элемента в простом веществе равна нулю. Степень окисления фосфора в оксиде состава P 2 O 5 равна (+5). Изменение степени окисления фосфора: 0 → +5, т.е. третий вариант ответа.
  • Степень окисления фосфора в кислоте состава HPO 3 равна (+5), а H 3 PO 2 — (+1). Изменение степени окисления фосфора: +5 → +1, т.е. пятый вариант ответа.

ПРИМЕР 2

Задание Степень окисления (-3) углерод имеет в соединении: а) CH 3 Cl; б) C 2 H 2 ; в) HCOH; г) C 2 H 6 .
Решение Для того, чтобы дать верный ответ на поставленный вопрос будем поочередно определять степень окисления углерода в каждом из предложенных соединений.

а) степень окисления водорода равна (+1), а хлора - (-1). Примем за «х» степень окисления углерода:

x + 3×1 + (-1) =0;

Ответ неверный.

б) степень окисления водорода равна (+1). Примем за «у» степень окисления углерода:

2×у + 2×1 = 0;

Ответ неверный.

в) степень окисления водорода равна (+1), а кислорода - (-2). Примем за «z» степень окисления углерода:

1 + z + (-2) +1 = 0:

Ответ неверный.

г) степень окисления водорода равна (+1). Примем за «a» степень окисления углерода:

2×а + 6×1 = 0;

Верный ответ.

Ответ Вариант (г)

9.1. Какие бывают химические реакции

Вспомним, что химическими реакциями мы называем любые химические явления природы. При химической реакции происходит разрыв одних и образование других химических связей. В результате реакции из одних химических веществ получаются другие вещества (см. гл. 1).

Выполняя домашнее задание к § 2.5, вы познакомились с традиционным выделением из всего множества химических превращений реакций четырех основных типов, тогда же вы предложили и их названия: реакции соединения, разложения, замещения и обмена.

Примеры реакций соединения:

C + O 2 = CO 2 ; (1)
Na 2 O + CO 2 = Na 2 CO 3 ; (2)
NH 3 + CO 2 + H 2 O = NH 4 HCO 3 . (3)

Примеры реакций разложения:

2Ag 2 O 4Ag + O 2­ ; (4)
CaCO 3 CaO + CO 2­ ; (5)
(NH 4) 2 Cr 2 O 7 N 2­ + Cr 2 O 3 + 4H 2 O­ . (6)

Примеры реакций замещения:

CuSO 4 + Fe = FeSO 4 + Cu ; (7)
2NaI + Cl 2 = 2NaCl + I 2 ; (8)
CaCO 3 + SiO 2 = CaSiO 3 + CO 2­ . (9)

Реакции обмена – химические реакции, в которых исходные вещества как бы обмениваются своими составными частями.

Примеры реакций обмена:

Ba(OH) 2 + H 2 SO 4 = BaSO 4 + 2H 2 O; (10)
HCl + KNO 2 = KCl + HNO 2 ; (11)
AgNO 3 + NaCl = AgCl + NaNO 3 . (12)

Традиционная классификация химических реакций не охватывает все их разнообразие – кроме реакций четырех основных типов существует еще и множество более сложных реакций.
Выделение двух других типов химических реакций основано на участии в них двух важнейших нехимических частиц: электрона и протона.
При протекании некоторых реакций происходит полная или частичная передача электронов от одних атомов к другим. При этом степени окисления атомов элементов, входящих в состав исходных веществ, изменяются; из приведенных примеров это реакции 1, 4, 6, 7 и 8. Эти реакции называются окислительно-восстановительными .

В другой группе реакций от одной реагирующей частицы к другой переходит ион водорода (Н +), то есть протон. Такие реакции называют кислотно-основными реакциями или реакциями с передачей протона .

Среди приведенных примеров такими реакциями являются реакции 3, 10 и 11. По аналогии с этими реакциями окислительно-восстановительные реакции иногда называют реакциями с передачей электрона . С ОВР вы познакомитесь в § 2, а с КОР – в следующих главах.

РЕАКЦИИ СОЕДИНЕНИЯ, РЕАКЦИИ РАЗЛОЖЕНИЯ, РЕАКЦИИ ЗАМЕЩЕНИЯ, РЕАКЦИИ ОБМЕНА, ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ, КИСЛОТНО-ОСНОВНЫЕ РЕАКЦИИ.
Составьте уравнения реакций, соответствующих следующим схемам:
а) HgO Hg + O 2 (t ); б) Li 2 O + SO 2 Li 2 SO 3 ; в) Cu(OH) 2 CuO + H 2 O (t );
г) Al + I 2 AlI 3 ; д) CuCl 2 + Fe FeCl 2 + Cu; е) Mg + H 3 PO 4 Мg 3 (PO 4) 2 + H 2 ;
ж) Al + O 2 Al 2 O 3 (t ); и) KClO 3 + P P 2 O 5 + KCl (t ); к) CuSO 4 + Al Al 2 (SO 4) 3 + Cu;
л) Fe + Cl 2 FeCl 3 (t ); м) NH 3 + O 2 N 2 + H 2 O (t ); н) H 2 SO 4 + CuO CuSO 4 + H 2 O.
Укажите традиционный тип реакции. Отметьте окислительно-восстановительные и кислотно-основные реакции. В окислительно-восстановительных реакциях укажите, атомы каких элементов меняют свои степени окисления.

9.2. Окислительно-восстановительные реакции

Рассмотрим окислительно-восстановительную реакцию, протекающую в доменных печах при промышленном получении железа (точнее, чугуна) из железной руды:

Fe 2 O 3 + 3CO = 2Fe + 3CO 2 .

Определим степени окисления атомов, входящих в состав как исходных веществ, так и продуктов реакции

Fe 2 O 3 + = 2Fe +

Как видите, степень окисления атомов углерода в результате реакции увеличилась, степень окисления атомов железа уменьшилась, а степень окисления атомов кислорода осталась неизменной. Следовательно, атомы углерода в этой реакции подверглись окислению, то есть потеряли электроны (окислились ), а атомы железа – восстановлению, то есть присоединили электроны (восстановились ) (см. § 7.16). Для характеристики ОВР используют понятия окислитель и восстановитель .

Таким образом, в нашей реакции атомами-окислителями являются атомы железа, а атомами-восстановителями – атомы углерода.

В нашей реакции веществом-окислителем является оксид железа(III), а веществом-восстановителем – оксид углерода(II).
В тех случаях, когда атомы-окислители и атомы-восстановители входят в состав одного и того же вещества (пример: реакция 6 из предыдущего параграфа), понятия " вещество-окислитель" и " вещество-восстановитель" не используются.
Таким образом, типичными окислителями являются вещества, в состав которых входят атомы, склонные присоединять электроны (полностью или частично), понижая свою степень окисления. Из простых веществ это прежде всего галогены и кислород, в меньшей степени сера и азот. Из сложных веществ – вещества, в состав которых входят атомы в высших степенях окисления, не склонные в этих степенях окисления образовывать простые ионы: HNO 3 (N +V), KMnO 4 (Mn +VII), CrO 3 (Cr +VI), KClO 3 (Cl +V), KClO 4 (Cl +VII) и др.
Типичными восстановителями являются вещества, в состав которых входят атомы, склонные полностью или частично отдавать электроны, повышая свою степень окисления. Из простых веществ это водород, щелочные и щелочноземельные металлы, а также алюминий. Из сложных веществ – H 2 S и сульфиды (S –II), SO 2 и сульфиты (S +IV), йодиды (I –I), CO (C +II), NH 3 (N –III) и др.
В общем случае почти все сложные и многие простые вещества могут проявлять как окислительные, так и восстановительные свойства. Например:
SO 2 + Cl 2 = S + Cl 2 O 2 (SO 2 – сильный восстановитель);
SO 2 + C = S + CO 2 (t) (SO 2 – слабый окислитель);
C + O 2 = CO 2 (t) (C – восстановитель);
C + 2Ca = Ca 2 C (t) (С – окислитель).
Вернемся к реакции, разобранной нами в начале этого параграфа.

Fe 2 O 3 + = 2Fe +

Обратите внимание, что в результате реакции атомы-окислители (Fe +III) превратились в атомы-восстановители (Fe 0), а атомы-восстановители (C +II) превратились в атомы-окислители (C +IV). Но CO 2 в любых условиях очень слабый окислитель, а железо, хоть и является восстановителем, но в данных условиях значительно более слабым, чем CO. Поэтому продукты реакции не реагируют друг с другом, и обратная реакция не протекает. Приведенный пример является иллюстрацией общего принципа, определяющего направление протекания ОВР:

Окислительно-восстановительные реакции протекают в направлении образования более слабого окислителя и более слабого восстановителя.

Окислительно-восстановительные свойства веществ можно сравнивать только в одинаковых условиях. В некоторых случаях это сравнение может быть проведено количественно.
Выполняя домашнее задание к первому параграфу этой главы, вы убедились, что подобрать коэффициенты в некоторых уравнениях реакций (особенно ОВР) довольно сложно. Для упрощения этой задачи в случае окислительно-восстановительных реакций используют следующие два метода:
а) метод электронного баланса и
б) метод электронно-ионного баланса .
Метод электронного баланса вы изучите сейчас, а метод электронно-ионного баланса обычно изучается в высших учебных заведениях.
Оба эти метода основаны на том, что электроны в химических реакциях никуда не исчезают и ниоткуда не появляются, то есть число принятых атомами электронов равно числу электронов, отданных другими атомами.
Число отданных и принятых электронов в методе электронного баланса определяется по изменению степени окисления атомов. При использовании этого метода необходимо знать состав как исходных веществ, так и продуктов реакции.
Рассмотрим применение метода электронного баланса на примерах.

Пример 1. Составим уравнение реакции железа с хлором. Известно, что продуктом такой реакции является хлорид железа(III). Запишем схему реакции:

Fe + Cl 2 FeCl 3 .

Определим степени окисления атомов всех элементов, входящих в состав веществ, участвующих в реакции:

Атомы железа отдают электроны, а молекулы хлора их принимают. Выразим эти процессы электронными уравнениями :
Fe – 3e – = Fe +III ,
Cl 2 + 2e – = 2Cl –I .

Чтобы число отданных электронов было равно числу принятых, надо первое электронное уравнение умножить на два, а второе – на три:

Fe – 3e – = Fe +III ,
Cl 2 + 2e – = 2Cl –I
2Fe – 6e – = 2Fe +III ,
3Cl 2 + 6e – = 6Cl –I .

Введя коэффициенты 2 и 3 в схему реакции, получаем уравнение реакции:
2Fe + 3Cl 2 = 2FeCl 3 .

Пример 2. Составим уравнение реакции горения белого фосфора в избытке хлора. Известно, что в этих условиях образуется хлорид фосфора(V):

+V –I
P 4 + Cl 2 PCl 5 .

Молекулы белого фосфора отдают электроны (окисляются), а молекулы хлора их принимают (восстанавливаются):

P 4 – 20e – = 4P +V
Cl 2 + 2e – = 2Cl –I
1
10
2
20
P 4 – 20e – = 4P +V
Cl 2 + 2e – = 2Cl –I
P 4 – 20e – = 4P +V
10Cl 2 + 20e – = 20Cl –I

Полученные первоначально множители (2 и 20) имели общий делитель, на который (как будущие коэффициенты в уравнении реакции) и были разделены. Уравнение реакции:

P 4 + 10Cl 2 = 4PCl 5 .

Пример 3. Составим уравнение реакции, протекающей при обжиге сульфида железа(II) в кислороде.

Схема реакции:

+III –II +IV –II
+ O 2 +

В этом случае окисляются и атомы железа(II), и атомы серы(– II). В состав сульфида железа(II) атомы этих элементов входят в отношении 1:1 (см. индексы в простейшей формуле).
Электронный баланс:

4 Fe +II – e – = Fe +III
S –II – 6e – = S +IV
Всего отдают 7е
7 O 2 + 4e – = 2O –II

Уравнение реакции: 4FeS + 7O 2 = 2Fe 2 O 3 + 4SO 2 .

Пример 4 . Составим уравнение реакции, протекающей при обжиге дисульфида железа(II) (пирита) в кислороде.

Схема реакции:

+III –II +IV –II
+ O 2 +

Как и в предыдущем примере, здесь тоже окисляются и атомы железа(II), и атомы серы, но со степенью окисления – I. В состав пирита атомы этих элементов входят в отношении 1:2 (см. индексы в простейшей формуле). Именно в этом отношении атомы железа и серы вступают в реакцию, что и учитывается при составлении электронного баланса:

Fe +III – e – = Fe +III
2S –I – 10e – = 2S +IV
Всего отдают 11е
O 2 + 4e – = 2O –II

Уравнение реакции: 4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

Встречаются и более сложные случаи ОВР, с некоторыми из них вы познакомитесь, выполняя домашнее задание.

АТОМ-ОКИСЛИТЕЛЬ, АТОМ-ВОССТАНОВИТЕЛЬ, ВЕЩЕСТВО-ОКИСЛИТЕЛЬ, ВЕЩЕСТВО-ВОССТАНОВИТЕЛЬ, МЕТОД ЭЛЕКТРОННОГО БАЛАНСА, ЭЛЕКТРОННЫЕ УРАВНЕНИЯ.
1.Составьте электронный баланс к каждому уравнению ОВР, приведенному в тексте § 1 этой главы.
2.Составьте уравнения ОВР, обнаруженных вами при выполнении задания к § 1 этой главы. На этот раз для расстановки коэффициентов используйте метод электронного баланса. 3.Используя метод электронного баланса, составьте уравнения реакций, соответствующие следующим схемам: а) Na + I 2 NaI;
б) Na + O 2 Na 2 O 2 ;
в) Na 2 O 2 + Na Na 2 O;
г) Al + Br 2 AlBr 3 ;
д) Fe + O 2 Fe 3 O 4 (t );
е) Fe 3 O 4 + H 2 FeO + H 2 O (t );
ж) FeO + O 2 Fe 2 O 3 (t );
и) Fe 2 O 3 + CO Fe + CO 2 (t );
к) Cr + O 2 Cr 2 O 3 (t );
л) CrO 3 + NH 3 Cr 2 O 3 + H 2 O + N 2 (t );
м) Mn 2 O 7 + NH 3 MnO 2 + N 2 + H 2 O;
н) MnO 2 + H 2 Mn + H 2 O (t );
п) MnS + O 2 MnO 2 + SO 2 (t )
р) PbO 2 + CO Pb + CO 2 (t );
с) Cu 2 O + Cu 2 S Cu + SO 2 (t );
т) CuS + O 2 Cu 2 O +SO 2 (t );
у) Pb 3 O 4 + H 2 Pb + H 2 O (t ).

9.3. Экзотермические реакции. Энтальпия

Почему происходят химические реакции?
Для ответа на этот вопрос вспомним, почему отдельные атомы объединяются в молекулы, почему из изолированных ионов образуется ионный кристалл, почему при образовании электронной оболочки атома действует принцип наименьшей энергии. Ответ на все эти вопросы один и тот же: потому, что это энергетически выгодно. Это значит, что при протекании таких процессов выделяется энергия. Казалось бы, что и химические реакции должны протекать по этой же причине. Действительно, можно провести множество реакций, при протекании которых выделяется энергия. Энергия выделяется, как правило, в виде теплоты.

Если при экзотермической реакции теплота не успевает отводиться, то реакционная система нагревается.
Например, в реакции горения метана

СН 4(г) + 2О 2(г) = СО 2(г) + 2Н 2 О (г)

выделяется столько теплоты, что метан используется как топливо.
Тот факт, что в этой реакции выделяется теплота, можно отразить в уравнении реакции:

СН 4(г) + 2О 2(г) = СО 2(г) + 2Н 2 О (г) + Q.

Это так называемое термохимическое уравнение . Здесь символ "+Q " означает, что при сжигании метана выделяется теплота. Эта теплота называется тепловым эффектом реакции .
Откуда же берется выделяющаяся теплота?
Вы знаете, что при химических реакциях рвутся и образуются химические связи. В данном случае рвутся связи между атомами углерода и водорода в молекулах СН 4 , а также между атомами кислорода в молекулах О 2 . При этом образуются новые связи: между атомами углерода и кислорода в молекулах СО 2 и между атомами кислорода и водорода в молекулах Н 2 О. Для разрыва связей нужно затратить энергию (см. "энергия связи" , "энергия атомизации"), а при образовании связей энергия выделяется. Очевидно, что, если "новые" связи более прочные, чем "старые" , то энергии выделится больше, чем поглотится. Разность между выделившейся и поглощенной энергией и составляет тепловой эффект реакции.
Тепловой эффект (количество теплоты) измеряется в килоджоулях, например:

2Н 2(г) + О 2(г) = 2Н 2 О (г) + 484 кДж.

Такая запись означает, что 484 килоджоуля теплоты выделится, если два моля водорода прореагируют с одним молем кислорода и при этом образуется два моля газообразной воды (водяного пара).

Таким образом, в термохимических уравнениях коэффициенты численно равны количествам вещества реагентов и продуктов реакции .

От чего зависит тепловой эффект каждой конкретной реакции?
Тепловой эффект реакции зависит
а) от агрегатных состояний исходных веществ и продуктов реакции,
б) от температуры и
в) от того, происходит ли химическое превращение при постоянном объеме или при постоянном давлении.
Зависимость теплового эффекта реакции от агрегатного состояния веществ связана с тем, что процессы перехода из одного агрегатного состояния в другое (как и некоторые другие физические процессы) сопровождаются выделением или поглощением теплоты. Это также может быть выражено термохимическим уравнением. Пример – термохимическое уравнение конденсации водяного пара:

Н 2 О (г) = Н 2 О (ж) + Q.

В термохимических уравнениях, а при необходимости и в обычных химических уравнениях, агрегатные состояния веществ указываются с помощью буквенных индексов:
(г) – газ,
(ж) – жидкость,
(т) или (кр) – твердое или кристаллическое вещество.
Зависимость теплового эффекта от температуры связана с различиями в теплоемкостях исходных веществ и продуктов реакции.
Так как в результате экзотермической реакции при постоянном давлении всегда увеличивается объем системы, то часть энергии уходит на совершение работы по увеличению объема, и выделяющаяся теплота будет меньше, чем в случае протекания той же реакции при постоянном объеме.
Тепловые эффекты реакций обычно рассчитывают для реакций, протекающих при постоянном объеме при 25 ° С и обозначают символом Q o .
Если энергия выделяется только в виде теплоты, а химическая реакция протекает при постоянном объеме, то тепловой эффект реакции (Q V ) равен изменению внутренней энергии (D U ) веществ-участников реакции, но с противоположным знаком:

Q V = – U .

Под внутренней энергией тела понимают суммарную энергию межмолекулярных взаимодействий, химических связей, энергию ионизации всех электронов, энергию связей нуклонов в ядрах и все прочие известные и неизвестные виды энергии, " запасенные" этим телом. Знак " – " обусловлен тем, что при выделении теплоты внутренняя энергия уменьшается. То есть

U = – Q V .

Если же реакция протекает при постоянном давлении, то объем системы может изменяться. На совершение работы по увеличению объема также уходит часть внутренней энергии. В этом случае

U = – (Q P + A ) = –(Q P + P V ),

где Q p – тепловой эффект реакции, протекающей при постоянном давлении. Отсюда

Q P = – U – P V .

Величина, равная U + P V получила название изменение энтальпии и обозначается D H .

H = U + P V .

Следовательно

Q P = – H .

Таким образом, при выделении теплоты энтальпия системы уменьшается. Отсюда старое название этой величины: " теплосодержание" .
В отличие от теплового эффекта, изменение энтальпии характеризует реакцию независимо от того, протекает она при постоянном объеме или постоянном давлении. Термохимические уравнения, записанные с использованием изменения энтальпии, называются термохимическими уравнениями в термодинамической форме . При этом приводится значение изменения энтальпии в стандартных условиях (25 °С, 101,3 кПа), обозначаемое H о . Например:
2Н 2(г) + О 2(г) = 2Н 2 О (г) H о = – 484 кДж;
CaO (кр) + H 2 O (ж) = Сa(OH) 2(кр) H о = – 65 кДж.

Зависимость количества теплоты, выделяющейся в реакции (Q ) от теплового эффекта реакции (Q o) и количества вещества (n Б) одного из участников реакции (вещества Б – исходного вещества или продукта реакции) выражается уравнением:

Здесь Б – количество вещества Б, задаваемое коэффициентом перед формулой вещества Б в термохимическом уравнении.

Задача

Определите количество вещества водорода, сгоревшего в кислороде, если при этом выделилось 1694 кДж теплоты.

Решение

2Н 2(г) + О 2(г) = 2Н 2 О (г) + 484 кДж.

Q = 1694 кДж, 6.Тепловой эффект реакции взаимодействия кристаллического алюминия с газообразным хлором равен 1408 кДж. Запишите термохимическое уравнение этой реакции и определите массу алюминия, необходимого для получения 2816 кДж теплоты с использованием этой реакции.
7.Определите количество теплоты, выделяющейся при сгорании на воздухе 1 кг угля, содержащего 90 % графита, если тепловой эффект реакции горения графита в кислороде равна 394 кДж.

9.4. Эндотермические реакции. Энтропия

Кроме экзотермических реакций возможны реакции, при протекании которых теплота поглощается, и, если ее не подводить, то реакционная система охлаждается. Такие реакции называют эндотермическими .

Тепловой эффект таких реакций отрицательный. Например:
CaCO 3(кр) = CaO (кр) +CO 2(г) – Q,
2HgO (кр) = 2Hg (ж) + O 2(г) – Q,
2AgBr (кр) = 2Ag (кр) + Br 2(г) – Q.

Таким образом, энергия, выделяющаяся при образовании связей в продуктах этих и им подобных реакций, меньше, чем энергия, необходимая для разрыва связей в исходных веществах.
Что же является причиной протекания таких реакций, ведь энергетически они невыгодны?
Раз такие реакции возможны, значит существует какой-то неизвестный нам фактор, являющийся причиной их протекания. Попробуем его обнаружить.

Возьмем две колбы и заполним одну из них азотом (бесцветный газ), а другую – диоксидом азота (бурый газ) так, чтобы и давление, и температура в колбах были одинаковыми. Известно, что эти вещества между собой не вступают в химическую реакцию. Герметично соединим колбы горлышками и установим их вертикально, так, чтобы колба с более тяжелым диоксидом азота была внизу (рис. 9.1). Через некоторое время мы увидим, что бурый диоксид азота постепенно распространяется в верхнюю колбу, а бесцветный азот проникает в нижнюю. В результате газы смешиваются, и окраска содержимого колб становится одинаковой.
Что же заставляет газы смешиваться?
Хаотическое тепловое движение молекул.
Приведенный опыт показывает, что самопроизвольно, без какого бы то ни было нашего (внешнего) воздействия может протекать процесс, тепловой эффект которого равен нулю. А он действительно равен нулю, потому что химического взаимодействия в данном случае нет (химические связи не рвутся и не образуются), а межмолекулярное взаимодействие в газах ничтожно и практически одинаково.
Наблюдаемое явление представляет собой частный случай проявления всеобщего закона Природы, в соответствии с которым системы, состоящие из большого числа частиц, всегда стремятся к наибольшей неупорядоченности.
Мерой такой неупорядоченности служит физическая величина, называемая энтропией .

Таким образом,

чем БОЛЬШЕ ПОРЯДКА – тем МЕНЬШЕ ЭНТРОПИЯ,
чем МЕНЬШЕ ПОРЯДКА – тем БОЛЬШЕ ЭНТРОПИЯ.

Уравнения связи между энтропией (S ) и другими величинами изучаются в курсах физики и физической химии. Единица измерений энтропии [S ] = 1 Дж/К.
Энтропия возрастает при нагревании вещества и уменьшается при его охлаждении. Особенно сильно она возрастает при переходе вещества из твердого в жидкое и из жидкого в газообразное состояние.
Что же произошло в нашем опыте?
При смешении двух разных газов степень неупорядоченности возросла. Следовательно, возросла энтропия системы. При нулевом тепловом эффекте это и послужило причиной самопроизвольного протекания процесса.
Если теперь мы захотим разделить смешавшиеся газы, то нам придется совершить работу, то есть затратить для этого энергию. Самопроизвольно (за счет теплового движения) смешавшиеся газы никогда не разделятся!
Итак, мы с вами обнаружили два фактора, определяющих возможность протекания многих процессов, в том числе и химических реакций:
1) стремление системы к минимуму энергии (энергетический фактор ) и
2) стремление системы к максимуму энтропии (энтропийный фактор ).
Посмотрим теперь, как влияют на возможность протекания химических реакций различные комбинации этих двух факторов.
1. Если в результате предполагаемой реакции энергия продуктов реакции оказывается меньше, чем энергия исходных веществ, а энтропия больше (" под гору к большему беспорядку"), то такая реакция может протекать и будет экзотермической.
2. Если в результате предполагаемой реакции энергия продуктов реакции оказывается больше, чем энергия исходных веществ, а энтропия меньше (" в гору к большему порядку"), то такая реакция не идет.
3. Если в предполагаемой реакции энергетический и энтропийный факторы действуют в разные стороны (" под гору, но к большему порядку" или " в гору, но к большему беспорядку"), то без специальных расчетов сказать что-либо о возможности протекания такой реакции нельзя (" кто перетянет"). Подумайте, к какому из этих случаев относятся эндотермические реакции.
Возможность протекания химической реакции можно оценить, рассчитав изменение в ходе реакции физической величины, зависящей как от изменения энтальпии, так и от изменения энтропии в этой реакции. Такая физическая величина называется энергией Гиббса (в честь американского физикохимика XIX в. Джозайя Уилларда Гиббса).

G = H – T S

Условие самопроизвольного протекания реакции:

G < 0.

При низких температурах фактором, определяющим возможность протекания реакции в большей степени является энергетический фактор, а при высокой – энтропийный. Из приведенного уравнения, в частности, видно, почему не протекающие при комнатной температуре реакции разложения (энтропия увеличивается) начинают идти при повышенной температуре.

ЭНДОТЕРМИЧЕСКАЯ РЕАКЦИЯ, ЭНТРОПИЯ, ЭНЕРГЕТИЧЕСКИЙ ФАКТОР, ЭНТРОПИЙНЫЙ ФАКТОР, ЭНЕРГИЯ ГИББСА.
1.Приведите примеры известных вам эндотермических процессов.
2.Почему энтропия кристалла хлорида натрия меньше, чем энтропия расплава, полученного из этого кристалла?
3.Тепловой эффект реакции восстановления меди из ее оксида углем

2CuO (кр) + C (графит) = 2Cu (кр) + CO 2(г)

составляет –46 кДж. Запишите термохимическое уравнение и рассчитайте, какую энергию нужно затратить для получения 1 кг меди по такой реакции.
4.При прокаливании карбоната кальция было затрачено 300 кДж теплоты. При этом по реакции

CaCO 3(кр) = CaO (кр) + CO 2(г) – 179кДж

образовалось 24,6 л углекислого газа. Определите, какое количество теплоты было израсходовано бесполезно. Сколько граммов оксида кальция при этом образовалось?
5.При прокаливании нитрата магния образуется оксид магния, газообразный диоксид азота и кислород. Тепловой эффект реакции равен –510 кДж. Составьте термохимическое уравнение и определите, какое количество теплоты поглотилось, если выделилось 4,48 л кислорода. Какова масса разложившегося нитрата магния?

По признаку изменения степеней окисления атомов, входящих в состав реагирующих веществ, химические реакции подразделяются на два типа.

1) Реакции, протекающие без изменения степеней окисления атомов.

Например:

2+4-2 t +2 -2 +4 -2
CaCO 3 = CaO + CO 2

В этой реакции степень окисления каждого из атомов осталась без изменения.

2) Реакции, протекающие с изменением степеней окисления атомов.

Например:

0 +2 -1 0 +2 -1
Zn + CuCl 2 = Cu + ZnCl 2

В этой реакции степени окисления атомов цинка и меди изменились.

Окислительно-восстановительные реакции – наиболее распространенные химические реакции.

На практике окислительно-восстановительная реакция – это присоединение или отдача электронов. Одни атомы (ионы, молекулы) отдают другим или принимают от них электроны.

Окисление.

Процесс отдачи электронов атомом, ионом или молекулой называется окислением .

При отдаче электронов степень окисления атома повышается.

Вещество, чьи атомы, ионы или молекулы отдают электроны, называется восстановителем .

В нашем примере атомы в степени окисления 0 перешли в атомы со степенью окисления +2. То есть произошел процесс окисления. При этом атом цинка, отдавший два электрона, является восстановителем (он повысил степень окисления с 0 до +2).

Процесс окисления записывают электронным уравнением, в котором указывают изменение степени окисления атомов и число электронов, отданных восстановителем.

Например:

0 +2 0
Zn – 2e – = Zn (окисление, Zn – восстановитель).

Восстановление.

Процесс присоединения электронов называют восстановлением .

При присоединении электронов степень окисления атома понижается.

Вещество, чьи атомы, ионы или молекулы присоединяют электроны, называют окислителем .

В нашем примере переход атомов меди со степенью окисления +2 в атомы со степенью окисления 0 является процессом восстановления. При этом атом меди со степенью окисления +2, принимая два электрона, понижает степень окисления от +2 до 0 и является окислителем.

Процесс окисления тоже записывают электронным уравнением:

2 0 0
Cu + 2e – = Cu (восстановление, Cu – окислитель).

Процесс восстановления и процесс окисления нераздельны и протекают одновременно.

0 +2 0 +2
Zn + CuCl 2 = Cu + ZnCl 2
восстановитель окислитель
окисляется восстанавливается

По изменению степени окисления все химические реакции можно разделить на два типа:

I.Реакции, протекающие без изменения степени окисления элементов, входящих в состав реагирующих веществ. Такие реакции относятся к реакциям ионного обмена.

Na 2 CO 3 + H 2 SO 4 = Na 2 SO 4 + CO 2 + H 2 O.

II. Реакции, идущие с изменением степени окисления элементов,

входящих в состав реагирующих веществ. Такие реакции относятся к окислительно-восстановительным реакциям.

5NaNO 2 + 2KMnO 4 + 3H 2 SO 4 = 5NaNO 3 +2MnSO 4 + K 2 SO 4 + 3H 2 O.

Степень окисления (окисленности) – характеристика состояния атомов элементов в составе молекулы. Она характеризует неравномерность распределения электронов между атомами элементов и соответствует заряду, который приобрел бы атом элемента, если бы все общие электронные пары его химических связей сместились в сторону более электроотрицательного элемента. В зависимости от относительной электроотрицательности элементов, образующих связь, электронная пара может быть смещена к одному из атомов или симметрично расположена относительно ядер атомов. Поэтому степень окисления элементов может иметь отрицательное, положительное или нулевое значение.

Элементы, атомы которых принимают электроны от других атомов, имеют отрицательную степень окисления. Элементы, атомы которых отдают свои электроны другим атомам, имеют положительную степень окисления. Нулевую степень окисления имеют атомы в молекулах простых веществ, а также, если вещество находится в атомном состоянии.

Степень окисления обозначается +1, +2.

Заряд иона 1+, 2+.

Степень окисления элемента в соединении определяется по правилам:

1.Степень окисления элемента в простых веществах равна нулю.

2.Некоторые элементы почти во всех своих соединениях проявляют постоянную степень окисления. К таким элементам относятся:

Hимеет степень окисления +1 (за исключением гидридов металлов).

Oимеет степень окисления –2 (за исключением фторидов).

3.Элементы I, II и III групп главных подгрупп Периодической системы элементов Д.И.Менделеева имеют постоянную степень окисления, равную номеру группы.

Элементы Na, Ba, Al: степень окисления +1, +2,+3 соответственно.

4.Для элементов, имеющих переменную степень окисления, существует понятие высшая и низшая степени окисления.

Высшая степень окисления элемента равна номеру группы Периодической системы элементов Д.И.Менделеева, в которой находится элемент.

Элементы N,Cl: высшая степень окисления +5,+7соответственно.

Низшая степень окисления элемента равна номеру группы Периодической системы элементов Д.И Менделеева, в которой находится элемент минус восемь.

Элементы N,Cl: низшая степень окисления -3,-1 соответственно.

5.В одноэлементных ионах степень окисления элемента равна заряду иона.

Fe 3+ - степень окисления равна +3; S 2- - степень окисления равна -2.

6.Сумма степеней окисления всех атомов элементов в молекуле равна нулю.

KNO 3 ; (+1) + X+ 3 · (-2) = 0; X= +5. Степень окисления азота равна +5.

7.Сумма степеней окисления всех атомов элементов в ионе равна заряду иона.

SO 4 2- ; X+ 4· (-2) = -2; X= +6. Степень окисления серы равна +6.

8.В соединениях, состоящих из двух элементов, элемент, который записан справа, всегда имеет низшую степень окисления.

Реакции, в которых изменяется степень окисления элементов, относятся к окислительно-восстановительным реакциям /ОВР/. Эти реакции состоят из процессов окисления и восстановления.

Окислением называется процесс отдачи электронов элементом, входящим в состав атома, молекулы или иона.

Al 0 – 3e = Al 3+

H 2 – 2e = 2H +

Fe 2+ - e = Fe 3+

2Cl - - 2e= Cl 2

При окислении степень окисления элемента повышается. Вещество (атом, молекула или ион), в состав которого входит элемент, отдающий электроны, называется восстановителем. Al, H 2 , Fe 2+ , Cl - - восстановители. Восстановитель окисляется.

Восстановлением называется процесс присоединения электронов элементом, входящим в состав атома, молекулы или иона.

Cl 2 + 2e = 2Cl -

Fe 3+ + e = Fe 2+

При восстановлении степень окисления элемента понижается. Вещество (атом, молекула или ион), в состав которого входит элемент, принимающий электроны, называется окислителем. S, Fe 3+ , Cl 2 – окислители. Окислитель восстанавливается.

Общее число электронов в системе при химической реакции не изменяется. Число электронов, отдаваемых восстановителем, равно числу электронов, присоединяемых окислителем.

Для составления уравнения окислительно-восстановительной реакции (ОВР) в растворах используют ионно-электронный метод (метод полуреакций).

ОВР могут протекать в кислой, нейтральной или щелочной средах. В уравнениях реакций учитывают возможное участие молекул воды (HOH) и содержащихся в растворе в зависимости от характера среды избытка ионов Н + или ОН - :

в кислой среде – НОН и ионы Н + ;

в нейтральной среде – только НОН;

в щелочной среде – НОН и ионы ОН - .

При составлении уравнений ОВР необходимо придерживаться определенной последовательности:

1.Написать схему реакции.

2.Определить элементы, которые изменили степень окисления.

3.Написать схему в кратком ионно-молекулярном виде: сильные электролиты в виде ионов, слабые электролиты в виде молекул.

4.Составить уравнения процессов окисления и восстановления (уравнения полуреакций). Для этого записать элементы, изменяющие степень окисления в виде реальных частиц (ионов, атомов, молекул) и уравнять число каждого элемента в левой и правой частях полуреакции.

Примечание:

Если исходное вещество содержит меньше атомов кислорода, чем продукты (Р РО 4 3-) , то недостаток кислорода поставляется средой.

Если исходное вещество содержит больше атомов кислорода, чем продукты (SO 4 2- SO 2) , то освобождающийся кислород связывается средой.

5.Уравнять левую и правую части уравнений по числу зарядов. Для этого прибавить или вычесть необходимое число электронов.

6.Подобрать множители для полуреакций окисления и восстановления так, чтобы число электронов при окислении было равно числу электронов при восстановлении.

7.Суммировать полуреакции окисления и восстановления с учетом найденных множителей.

8.Полученное ионно-молекулярное уравнение записать в молекулярной форме.

9.Провести проверку по кислороду.

Различают три типа окислительно-восстановительных реакций:

а) Межмолекулярные – реакции, в которых степень окисления изменяется у элементов, входящих в состав различных молекул.

2KMnO 4 + 5NaNO 2 + 3H 2 SO 4 2MnSO 4 + 5NaNO 3 + K 2 SO 4 + 3H 2 O

б) Внутримолекулярные – реакции, в которых степень окисления изменяется у элементов, входящих в состав одной молекулы.