Биология

Погрешности экспериментальных результатов. Виды погрешностей измерения Относительная погрешность метода измерения

Составляющие погрешности результата измерения представлены на рисунке 1.1.

По форме количественного выражения погрешности измерения делятся на абсолютные и относительные.

Абсолютной погрешностью (а), выражаемой в единицах измеряемой величины, называется отклонение результата измерения (х) от истинного значения (Х и или действительного значения (х 4). Таким образом, формула Дхизм = Х иям ~ Х и (Хо) может быть применима для количественной оценки абсолютной погрешности.

Абсолютная погрешность характеризует величину и знак, полученный погрешности, но нс определяет качество самого проведенного измерения.

Понятие погрешности характеризует как бы несовершенство измерения. Характеристикой качества измерения является используемое в метрологии понятие точности измерений, отражающее, как было показано выше, меру близости результатов измерений к истинному значению измеряемой физической величины. Точность и погрешность связаны между собой обратной зависимостью. Иначе говоря, высокой точности измерений соответствует малая погрешность. Поэтому, чтобы иметь возможность сравнить качество измерений, введено понятие относительной погрешности.

Относительной погрешностью () называется отношение абсолютной погрешности измерения к истинному значению измеряемой величины. Она вычисляется по формуле:

Мерой точности измеренийслужит величина, обратная модулю относительной погрешности, т.е. . Погрешность ($) часто выражают в

процентах:

Если измерение выполнено однократно и за абсолютную погрешность результата измерения д принята разность между показанием прибора и истинным значением принятой величины X и (Хд) то из соотношения (1.3) следует, что значение относительной погрешности б уменьшается с ростом величины Х и (Х д). Поэтому для измерений целесообразно выбирать такой прибор, показания которого были бы в последней части его шкалы (диапазона измерений), а для сравнения различных приборов использовать понятие приведенной погрешности. Выражение погрешности в приведенной форме используется для количественной оценки составляющей погрешности измерения, обусловленной инструментальной погрешностью (аппаратурной, приборной) - она будет рассмотрена ниже (см. п. 1.4.2 пособия).

По характеру (закономерности) изменения погрешности измерений подразделяются на систематические и случайные. К числу случайных относят и грубые погрешности.

Систематические погрешности (д с)- составляющие погрешности измерений, остающиеся постоянными или закономерно изменяющиеся при многократных (повторных) измерениях одной и той же величины в одних и тех же условиях. Из всех видов погрешностей, именно систематические, представляют собой наиболее опасные и трудно устранимые. Это объяснимо по ряду причин :

во-первых, систематическая погрешность постоянно искажает действительное значение полученного результата измерения в сторону его увеличения или уменьшения. Причем, заранее направление такого искажения трудно определить;

  • - во-вторых, величина систематической погрешности не может быть найдена методами математической обработки полученных результатов измерения. Она не может быть уменьшена при многократном измерении одними и теми же измерительными средствами;
  • - в-третьих, она может быть постоянная, может монотонно изменяться, она может изменяться периодически, но по полученным результатам измерения закон ее изменения трудно, а иногда и невозможно определить;
  • - в-четвертых, на результат измерений влияют несколько факторов, каждый из которых вызывает свою систематическую погрешность в зависимости от условий измерения.

Причем, каждый новый метод измерения может дать свои, заранее неизвестные систематические погрешности и надо искать приемы и способы исключения влияния этой систематической погрешности в процессе измерения.

Утверждение об отсутствии систематической погрешности или, что она пренебрежительно мала, требуется не только показать, но и доказать.

Такие погрешности могут быть выявлены только путём детального анализа возможных их источников и уменьшены (применением более точных приборов, калибровкой приборов с помощью рабочих мер и пр.). Однако полностью их устранить нельзя.

Не следует забывать, что необнаруженная систематическая погрешность «опаснее» случайной. Если случайные погрешности характеризуют разброс величины измеряемого параметра относительно его действительного значения, то систематическая погрешность устойчиво искажает непосредственно величину измеряемого параметра, и тем самым «удаляет» его от истинного (или условно-истинного) значения. Иногда для обнаружения систематической погрешности приходится проводить трудоемкие и долговременные (до нескольких месяцев) эксперименты и в результате обнаружится, что систематическая погрешность была пренебрежительно мала. Это очень ценный результат. Он показывает, что данная методика измерения даст точные результаты за счет исключения систематической погрешности.

Один из способов исключения систематических погрешностей рассмотрен в четвертом разделе данного учебного пособия. Однако в реальных условиях полностью исключить систематическую составляющую погрешности невозможно. Всегда остаются какие-то не исключенные остатки, которые и нужно учитывать, чтобы оценить их границы. Это и будет систематическая погрешность измерения. То есть, в принципе, систематическая погрешность тоже случайна, и указанное деление обусловлено лишь установившимися традициями обработки и представления результатов измерения.

По характеру изменения во времени систематические погрешности подразделяются на постоянные (сохраняющие величину и знак), прогрессирующие (возрастающие или убывающие во времени), периодические, а также изменяющиеся во времени по сложному непериодическому закону. Основные из этих погрешностей - прогрессирующие.

Прогрессирующая (дрейфовая) погрешность - это непредсказуемая погрешность, медленно меняющаяся во времени. Отличительные особенности прогрессирующих погрешностей следующие:

  • а) их можно скорректировать поправками только в данный момент времени, а далее они вновь непредсказуемо меняются;
  • б) изменения прогрессирующих погрешностей во времени нестационарных (характеристики которого изменяются во времени) представляют собой случайный процесс, и поэтому в рамках хорошо разработанной теории стационарных случайных процессов они могут быть описаны лишь с известными оговорками.

По источникам проявления различают следующие систематические погрешности:

  • - методические, вызванные используемым методом измерения;
  • - инструментальные, вызванные погрешностью используемого СИ (определяются классом точности СИ);
  • - погрешности, вызванные неправильной установкой СИ или влиянием неинформативных внешних факторов;
  • - погрешности, вызванные неправильными действиями оператора (укоренившийся неверный навык проведения измерительной процедуры).

В РМГ 29-2013 систематическая погрешность в зависимости от характера изменения во времени подразделена на постоянные, прогрессирующие, периодические и погрешности, изменяющиеся по сложному закону. В зависимости от характера изменения по диапазону измерений систематические погрешности подразделяются на постоянные и пропорциональные.

Постоянные погрешности - погрешности, которые в течение длительного времени, например, в течение времени выполнения всего ряда измерений, остаются постоянными (или - неизменными). Они встречаются наиболее часто.

Прогрессирующие погрешности - непрерывно возрастающие или убывающие погрешности. К ним относятся, например, погрешности вследствие износа измерительных наконечников, контактирующих с деталью при контроле ее прибором активного контроля.

Периодические погрешности - погрешности, значение которых является периодической функцией времени или перемещения указателя измерительного прибора.

Погрешности, изменяющиеся по сложному закону, происходят вследствие совместного действия нескольких систематических погрешностей.

Пропорциональные погрешности погрешности, значение которых пропорционально значению измеряемой величины.

Оставшуюся систематическую погрешность измерения после ведения поправки называют неисключенной систематической погрешностью (ПСП).

Случайные погрешности (А)- составляющие погрешности измерений, изменяющиеся случайным образом при повторных (многократных) измерениях одной и той же величины в одних и тех же условиях. В появлении таких погрешностей нет какой-либо закономерности, они проявляются при повторных измерениях одной и той же величины в виде некоторого разброса получаемых результатов.

Случайные погрешности неизбежны, неустранимы и всегда имеют место в результате измерения. Описание случайных погрешностей возможно только на основе теории случайных процессов и математической статистики.

В отличие от систематических, случайные погрешности нельзя исключить из результатов измерений путём введения поправки, однако их можно существенно уменьшить путем многократных измерений этой величины и последующей статической обработкой полученных результатов.

Грубые погрешности (промахи) - погрешности, существенно превышающие ожидаемые при данных условиях измерения. Такие погрешности возникают из-за ошибок оператора или неучтенных внешних воздействий. Их выявляют при обработке результатов измерений и исключают из рассмотрения, пользуясь определенными правилами. Следует заметить, что отнесение результатов наблюдения к числу промахов нс всегда может быть выполнено однозначно.

Следует учитывать два момента: с одной стороны, ограниченность числа выполненных наблюдений, нс позволяющих с высокой степенью

достоверности оценить форму и вид (провести идентификацию) закона распределения, а значит выбрать подходящие критерии оценки результата на наличие «промаха». Второй момент связан с особенностями объекта (или процесса), показатели (параметры) которого образуют случайную совокупность (выборку). Так при медицинских исследованиях, и даже в повседневной медицинской практике отдельные выпадающие результаты могут представлять собой вариант «биологической нормы», и поэтому они требуют учета, с одной стороны, и анализа причин, которые приводят к их появлениям - с другой.

Как было показано (п. 1.2) обязательными компонентами любого

измерения являются СИ (прибор, измерительная установка, измерительная система), метод измерения и человек, проводящий измерение.

Несовершенство каждого из этих компонентов приводит к появлению своей составляющей погрешности результата измерения. В соответствии с этим, по источнику (причинам) возникновения различают инструментальные, методические и личные (субъективные) погрешности._

Инструментальные (аппаратурные, приборные) погрешности измерений обусловлены погрешностью применяемого СИ и возникают из-за его несовершенства. Источниками инструментальных погрешностей могут быть, например, неточная градуировка прибора и смещение нуля, вариация показаний прибора в процессе эксплуатации и т. д.

Точность СИ является характеристикой качества СИ и отражает близость его погрешности к нулю. Считается, что чем меньше погрешность, тем точнее СИ. Интегральной характеристикой СИ является класс точности.

Термин «класс точности средств измерений» изменений в НД не претерпел. Класс точности - это обобщенная характеристика данного типа СИ. Класс точггости СИ, как правило, отражающий уровеггь их точности, выражается точностными характеристиками - пределами допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность. Говоря о классе точности, в РМГ 29-99 были отмечены два момента:

  • 1) класс точности дает возможность судить о том, в каких пределах находится погрешность СИ одного типа, но не является непосредственным показателем точности измерений, выполняемых с помощью каждого из этих средств. Это важгго учитывать при выборе СИ в зависимости от задаггггой точности измерений;
  • 2) класс точности СИ конкретного типа устанавливают в стандартах технических требований (условий) или в других НД.

В примечании к этому термину в РМГ 29-2013 сказано:

  • - класс точности дает возможность судить о значениях инструментальных погрешностей или инструментальных неопределенностей средств измерений данного типа при выполнении измерений;
  • - класс точггости применяется и к материальным мерам.

В РМГ 29-2013 введен новый для отечественной метрологии термин «инструментальная неопределенность» - это составляющая неопределенности измерений, обусловлсггггая примеггяемьгм средством измерений или измерительной системы.

Инструментальную неопределенность принято определять при калибровке СИ или измерительной системы, за исключением первичного эталона. Инструментальную неопределенность используют при оценивании неопределенности измерений по типу В. Информация, касающаяся инструментальной неопределенности, может быть приведена в спецификации СИ (паспорт, сертификат калибровки, удостоверение поверки).

Возможные составляющие инструментальной погрешности представлены на рисунке 1.8. Уменьшают инструментальные погрешности применением более точного прибора.


Рисунок 1.8- Инструментальная погрешность и ее составляющие

Погрешность метода измерений представляет собой составляющую систематической погрешности измерений, обусловленную несовершенством принятого метода измерений .

Погрешность метода измерения обусловлена:

  • - отличием принятой модели объекта измерения от модели, адекватно описывающей его свойство, которое определяется путём измерения (в этом выражается несовершенство метода измерения);
  • - влиянием способов применения СИ. Это имеет место, например, при измерении напряжения вольтметром с конечным значением внутреннего сопротивления. В таком случае вольтметр шунтирует участок цепи, на котором измеряется напряжение, и оно оказывается меньше, чем было до присоединения вольтметра;
  • - влиянием алгоритмов (формул), по которым производят вычисления результатов измерений (например, некорректностью расчетных формул);
  • - влиянием выбранного СИ на параметры сигналов;
  • - влиянием других факторов, не связанных со свойствами используемых

Методические погрешности часто называют теоретическими, потому что они связаны с разного рода отклонениями от идеальной модели измерительного процесса и использования неверных теоретических предпосылок (допущений) при измерениях. Вследствие упрощений, принятых в уравнениях для измерений, нередко возникают существенные погрешности, для компенсации действия которых следует вводить поправки. Поправки по величине равны погрешности и противоположны ей по знаку.

Отдельно среди методических погрешностей выделяют погрешности при статистической обработке результатов наблюдений. Кроме погрешностей, связанных с округлением промежуточных и конечных результатов, они содержат погрешности, связанные с заменой точечных (числовых) и вероятностных характеристик измеряемых величин их приближенными (экспериментальными) значениями. Такие погрешности возникают при замене теоретического распределения опытным, что всегда имеет место при ограниченном числе наблюдаемых значений (результатов наблюдения).

Отличительной особенностью методических погрешностей является то, что они не могут быть указаны в документации на используемое СИ, поскольку от него нс зависят; их должен определять оператор в каждом конкретном случае. В связи с этим оператор должен чётко различать фактически измеряемую им величину и величину, подлежащую измерению.

Иногда погрешность метода может проявляться как случайная. Если, например, электронный вольтметр обладает недостаточно высоким входным сопротивлением, то его подключение к исследуемой схеме способно изменить в ней распределение токов и напряжений. При этом результат измерения может существенно отличаться от действительного. Методическую погрешность можно уменьшить путём применения более точного метода измерения.

Субъективная погрешность - составляющая систематической погрешности измерений, обусловленная индивидуальными особенностями оператора (наблюдателя).

Субъективные (личные) погрешности вызываются ошибками оператора при отсчете показаний СИ. Такого рода погрешности вызываются, например, запаздыванием или опережением при регистрации сигнала, неправильным отсчетом десятых долей деления шкалы, асимметрией, возникающей при установке штриха посередине между двумя рисками.

Согласно отмененного РМГ 29-99 погрешность оператора

(субъективная погрешность) - погрешность, обусловленная погрешностью отсчета оператором показаний по шкале СИ, диаграммам регистрирующих приборов. В настоящее время этот термин не регламентирован в НД.

Субъективные погрешности, как следует из определения, вызываются состоянием оператора, его положением во времени работы, несовершенством органов чувств, эргономическими свойствами СИ. Так имеют место погрешности от небрежности и невнимания оператора, от параллакса, т. е. от неправильного направления взгляда при отсчете показаний стрелочного прибора и пр.

Подобные погрешности устраняются применением современных цифровых приборов или автоматических методов измерения.

По характеру поведения измеряемой физической величины в процессе измерений различают статические и динамические погрешности.

Статические погрешности возникают при измерении установившегося значения измеряемой величины, т.е. когда эта величина перестает изменяться во времени.

Динамическая погрешность (средства измерений): разность между погрешностью СИ в динамическом режиме и его статической погрешностью, соответствующей значению величины в данный момент времени. Динамические погрешности имеют место при динамических измерениях, когда измеряемая величина изменяется во времени и требуется установить закон ее изменения, т. е. погрешности, свойственные условиям динамического измерения. Причина появления динамических погрешностей состоит в несоответствии скоростных (временных) характеристик прибора и скорости изменения измеряемой величины.

В зависимости от влияния измеряемой величины на характер накопления в процессе измерения погрешности, она может быть аддитивная или мультипликативная.

Во всех перечисленных случаях на результат измерения оказывают влияние условия измерений, они формируют погрешность от влияющих факторов - внешнюю погрешность.

Внешняя погрешность - важная составляющая погрешности результата измерения, связанная с отклонением одной или нескольких влияющих величин от нормальных значений или выходом их за пределы нормальной области (например, влияние влажности, температуры, внешних электрических и магнитных полей, нестабильности источников питания, механических воздействий и т. д.). В большинстве случаев внешние погрешности являются систематическими и определяются дополнительными погрешностями применяемых СИ, в отличие от основной погрешности, полученной в нормальных условиях измерения.

В РМГ 29-2013 стандартизован термин «погрешность (средства измерений) дополнительная»: составляющая погрешности СИ, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величии от нормального се значения или вследствие се выхода за пределы нормальной области значений.

Различают нормальные и нормированные условия (рабочие условия) измерений. Значение влияющей величины, установленное в качестве номинального, принимают в качестве нормального значения влияющей величины. Так при измерении многих величин нормируется нормальное значение температуры 20 °С или 293 К, а в других случаях нормируется 296 К (23 °С). На нормальное значение, к которому приводятся результаты многих измерений, выполненные в разных условиях, обычно рассчитана основная погрешность СИ. Область значений влияющей величины, в пределах которой изменением результата измерений под се воздействием можно пренебречь в соответствии с установленными нормами точности, принимается как нормальная область значений влияющей величины.

Например, нормальная область значений температуры при поверке нормальных элементов класса точности - 0,005 в термостате не должна изменяться более чем на ±0,05 °С от установленной температуры 20 °С, т.е. быть в диапазоне от 19,95 °С до 20,05 °С.

Нормированные (рабочие) условия измерений - это условия измерений, которые должны выполняться во время измерений для того, чтобы средство измерений или измерительная система функционировали в соответствии со своим назначением (РМГ 29-2013).

Изменение показаний СИ во времени, обусловленное изменением влияющих величин или других факторов называется дрейфом показаний СИ. Например, ход хронометра, определяемый как разность поправок к его показаниям, вычисленных в разное время. Обычно ход хронометра определяют за сутки (суточный ход). Если происходит дрейф показаний нуля, то применяют термин «дрейф нуля».

В РМГ 29-2013 стандартизовано определение «инструментальный дрейф», под которым понимают «непрерывное или ступенчатое изменение показаний во времени, вызванное изменениями метрологических характеристик (МХ) СИ». Инструментальный дрейф СИ не связан ни с изменением измеряемой величины, ни с изменением любой выявленной влияющей величины.

Таким образом, погрешность от влияющих условий измерения следует рассматривать как составляющую систематической погрешности измерения, являющуюся следствием неучтенного влияния отклонений в одну сторону какого-либо из параметров, характеризующих условия измерений, от установленного значения.

Этот термин применяют в случае неучтенного или недостаточно учтенного действия той или иной влияющей величины. Однако следует отметить что, погрешность от влияющих условий может проявляться и как случайная, если действующий фактор имеет случайную природу (подобным образом проявляет себя температура помещения, в котором выполняются измерения).

Погрешность – это отклонение результата измерения от истинного значения измеряемой величины.

Истинное значение ФВ может быть установлено лишь путем проведения бесконечного числа измерений, что невозможно реализовать на практике. Истинное значение измеряемой величины является недостижимым, а для анализа погрешностей в качестве значения ближайшего к истинному, используют действительное значение измеряемой величины, значение получают с использованием самых совершенных методом измерений и самых высокоточных средств измерений. Таким образом, погрешность измерений представляет собой отклонение от действительного значения ∆=Xд – Хизм

Погрешность сопровождает все измерения и связана с несовершенством метода, средства измерения, условия измерения (когда они отличаются от н.у.).

В зависимости от принципов действия прибора те или иные факторы оказывают влияние.

Различают погрешности СИ и результата измерений за счет влияния внешних условий, особенностей измеряемой величины, несовершенства СИ.

Погрешность результата измерений включает в себя погрешность и средства измерений, также влияние условий проведения измерений, свойств объекта и измеряемой величины ∆ри=∆си+∆ву+∆св.о+∆сив.

Классификация погрешностей:

1) По способу выражения:

a) Абсолютная – погрешность, выраженная в единицах измеряемой величины ∆=Хд-Хизм

b) Относительная – погрешность, выраженная отношением абсолютной погрешности к результате измерений или действительному значению измеряемой величины γотн=(∆/Xд)* 100 .

c) Приведенная – это относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условию, принятому значению величины постоянному во всем диапазоне измерений (или части диапазона) γприв=(∆/Xнорм)*100, где Хнорм – нормирующее значение, установленное для приведенных значений. Выбор Хнорм производится в соответствии с ГОСТом 8.009-84. Это может быть верхний предел средства измерений, диапазон измерений, длина шкалы и т.л. Для множества средств измерений по приведенной погрешности устанавливают класс точности. Приведенная погрешность вводится потому что относительная характеризует погрешность только в данной точке шкалы и зависит от значения измеряемой величины.

2) По причинам и условиям возникновения:

a) Основная - это погрешность средств измерения, которое находятся в нормальных условиях эксплуатации, возникает из-за неидеальности функции преобразования и вообще неидеальности свойств средств измерений и отражает отличие действительной функции преобразования средств измерения в н.у. от номинальной нормированной документами на средства измерений (стандарты, тех. условия). Нормативными документами предусматриваются следующие н.у.:

  • Температура окружающей среды (20±5)°С;
  • Относительная влажность (65±15)%;
  • напряжение питания сети (220±4,4)В;
  • частота питания сети (50±1)Гц;
  • отсутствие эл. и магн. полей;
  • положение прибора горизонтальное, с отклонением ±2°.

Рабочие условия измерений – это условия, при которых значения влияющих величин находятся в пределах рабочих областей, для которых нормируют дополнительную погрешность или изменение показаний СИ.

Например, для конденсаторов нормируют дополнительную погрешность, связанную с отклонением температуры от нормальной; для амперметра отклонение частоты переменного тока 50 Гц.

b) Дополнительная – это составляющая погрешности средств измерений, возникающая дополнительно к основной, вследствие отклонения какой-либо из влияющих величин от нормы её значения или вследствие её выхода за пределы нормированной области значений. Обычно нормируется наибольшее значение дополнительной погрешности.

Предел допускаемой основной погрешности – наиб. основная погрешность средств измерения, при которой СИ может быть годным и допущено к применению по тех. условиям.

Предел допускаемой дополнительной погрешности – наибольшая дополнительная погрешность, при которой СИ допущено к применению.

Например, для прибора с КТ 1.0 приведенная дополнительная погрешность по температуре не должна превышать ±1% при изменении температуры на каждые 10°.

Пределы, допустимой основной и дополнительной погрешности могут быть выражены в форме абсолютной, относительной или приведенной погрешности.

Для того чтобы иметь возможность выбирать СИ путем сравнения их характеристик вводят обобщенную характеристику данного типа СИ – класс точности (КТ) . Обычно это предел допускаемых основной и дополнительной погрешностей. КТ позволяет судить в каких пределах находится погрешность СИ одного типа, но не является непосредственным показателем точности измерений, выполняемых с помощью каждого из этих СИ, т.к. погрешность зависит также от метода, условий измерений и т.д. Это нужно учитывать при выборе СИ в зависимости от заданной точности.

Значения КТ устанавливаются в стандартах или в технических условиях или других нормативных документах и выбираются в соответствии с ГОСТ 8.401-80 из стандартного ряда значений. Например, для электромеханических приборов: 0,05; 0,1; 0,2; 0,5; 1.0; 2,5; 4.0; 6.0.

Зная КТ СИ можно найти максимально допустимое значение абсолютной погрешности для всех точек диапазона измерений из формулы для приведенной погрешности: ∆maxдоп=(γприв*Xнорм)/100.

КТ обычно наносят на шкалу прибора в разных формах, например,(2.5) (в кружочке).

3) По характеру изменений:

a) систематические – составляющая погрешности, остающаяся постоянной или изменяющаяся по известной закономерности во все время проведения измерений. Может быть исключена из результатов измерения путем регулировки или введением поправок. К ним относят: методические П, инструментальные П, субъективные П и т д. Такое качество СИ, когда систематическая погрешность близка к нуля называют правильностью.

b) случайные – это составляющие погрешности, изменяющиеся случайным образом, причины нельзя точно указать, а значит, и устранить нельзя. Приводят к неоднозначности показаний. Уменьшение возможно при многократных измерениях и последующей статистической обработке результатов. Т.е. усредненный результат многократных измерений ближе к действительному значению, чем результат одного измерения. Качество, которое характеризуется близостью к нулю случайной составляющей погрешности называется сходимостью показаний этого прибора.

c) промахи – грубые погрешности, связанные с ошибками оператора или неучтенными внешними воздействиями. Их обычно исключают из результатов измерений, не учитывают при обработке результатов.

4) По зависимости от измеряемой величины:

a) Аддитивные погрешности (не зависит от измеряемой величины)

b) Мультипликативные погрешности (пропорционально значению измеряемой величины).

Мультипликативная погрешность по-другому называется погрешностью чувствительности.

Аддитивная погрешность обычно возникает из-за шумов, наводок, вибраций, трения в опорах. Пример: погрешность нуля и погрешность дискретности (квантования).

Мультипликативная погрешность вызывается погрешностью регулировки отдельных элементов измерительных приборов. Например, из-за старения (погрешность чувствительности СИ).

В зависимости от того, какая погрешность прибора является существенной, нормируют метрологические характеристики.

Если существенна аддитивная погрешность, то предел допустимой основной погрешности нормируют в виде приведенной погрешности.

Если существенна мультипликативная погрешность, то предел допустимой основной погрешности определяют по формуле относительной погрешности.

Тогда относительная суммарная погрешность: γотн=Δ/Х= γадд + γмульт= γадд+ γмульт+ γадд*Xнорм/Х– γадд=±, где с= γадд+ γмульт; d= γадд.

Это способ нормирования метрологических характеристик когда аддитивная и мультипликативная составляющие погрешности соизмеримы, т.е. предел относительной допустимой основной погрешности выражается в двучленной формуле соответственно и обозначение КТ состоит из двух чисел, выражающих c и d в %, разделенных косой чертой. Например, 0.02/0,01. Это удобно, т.к. число с – это относит.погрешность СИ в н.у. Второй член формулы характеризует увеличение относительной погрешности измерения при увеличении величины Х, т.е. характеризует влияние аддитивной составляющей погрешности.

5) В зависимости от влияния характера изменения измеряемой величины :

a) Статическая – погрешность СИ при измерении неизменной или медленно изменяющейся величины.

b) Динамическая – погрешность СИ, возникающая при измерении быстро меняющейся во времени ФВ. Динамическая погрешность является следствием инерционности прибора.

Неотъемлемой частью любого измерения является погрешность измерений. С развитием приборостроения и методик измерений человечество стремиться снизить влияние данного явления на конечный результат измерений. Предлагаю более детально разобраться в вопросе, что же это такое погрешность измерений.

Погрешность измерения – это отклонение результата измерения от истинного значения измеряемой величины. Погрешность измерений представляет собой сумму погрешностей, каждая из которых имеет свою причину.

По форме числового выражения погрешности измерений подразделяются на абсолютные и относительные

– это погрешность, выраженная в единицах измеряемой величины. Она определяется выражением.

(1.2), где X — результат измерения; Х 0 — истинное значение этой величины.

Поскольку истинное значение измеряемой величины остается неизвестным, на практике пользуются лишь приближенной оценкой абсолютной погрешности измерения, определяемой выражением

(1.3), где Х д — действительное значение этой измеряемой величины, которое с погрешностью ее определения принимают за истинное значение.

– это отношение абсолютной погрешности измерения к действительному значению измеряемой величины:

По закономерности появления погрешности измерения подразделяются на систематические, прогрессирующие, и случайные .

Систематическая погрешность – это погрешность измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же величины.

Прогрессирующая погрешность – этонепредсказуемая погрешность, медленно меняющаяся во времени.

Систематические и прогрессирующие погрешности средств измерений вызываются:

  • первые - погрешностью градуировки шкалы или ее небольшим сдвигом;
  • вторые - старением элементов средства измерения.

Систематическая погрешность остается постоянной или закономерно изменяющейся при многократных измерениях одной и той же величины. Особенность систематической погрешности состоит в том, что она может быть полностью устранена введением поправок. Особенностью прогрессирующих погрешностей является то, что они могут быть скорректированы только в данный момент времени. Они требуют непрерывной коррекции.

Случайная погрешность – это погрешность измерения изменяется случайным образом. При повторных измерениях одной и той же величины. Случайные погрешности можно обнаружить только при многократных измерениях. В отличии от систематических погрешностей случайные нельзя устранить из результатов измерений.

По происхождению различают инструментальные и методические погрешности средств измерений.

Инструментальные погрешности - это погрешности, вызываемые особенностями свойств средств измерений. Они возникают вследствие недостаточно высокого качества элементов средств измерений. К данным погрешностям можно отнести изготовление и сборку элементов средств измерений; погрешности из-за трения в механизме прибора, недостаточной жесткости его элементов и деталей и др. Подчеркнем, что инструментальная погрешность индивидуальна для каждого средства измерений.

Методическая погрешность - это погрешность средства измерения, возникающая из-за несовершенства метода измерения, неточности соотношения, используемого для оценки измеряемой величины.

Погрешности средств измерений.

– это разность между номинальным ее значением и истинным (действительным) значением воспроизводимой ею величины:

(1.5), где X н – номинальное значение меры; Х д – действительное значение меры

– это разность между показанием прибора и истинным (действительным) значением измеряемой величины:

(1.6), где X п – показания прибора; Х д – действительное значение измеряемой величины.

– это отношение абсолютной погрешности меры или измерительного прибора к истинному

(действительному) значению воспроизводимой или измеряемой величины. Относительная погрешность меры или измерительного прибора может быть выражена в (%).

(1.7)

– отношение погрешности измерительного прибора к нормирующему значению. Нормирующие значение XN – это условно принятое значение, равное или верхнему пределу измерений, или диапазону измерений, или длине шкалы. Приведенная погрешность обычно выражается в (%).

(1.8)

Предел допускаемой погрешности средств измерений – наибольшая без учета знака погрешность средства измерений, при которой оно может быть признано и допущено к применению. Данное определение применяют к основной и дополнительной погрешности, а также к вариации показаний. Поскольку свойства средств измерений зависят от внешних условий, их погрешности также зависят от этих условий, поэтому погрешности средств измерений принято делить на основные и дополнительные .

Основная – это погрешность средства измерений, используемого в нормальных условиях, которые обычно определены в нормативно-технических документах на данное средство измерений.

Дополнительная – это изменение погрешности средства измерений вследствии отклонения влияющих величин от нормальных значений.

Погрешности средств измерений подразделяются также на статические и динамические .

Статическая – это погрешность средства измерений, используемого для измерения постоянной величины. Если измеряемая величина является функцией времени, то вследствие инерционности средств измерений возникает составляющая общей погрешности, называется динамической погрешностью средств измерений.

Также существуют систематические и случайные погрешности средств измерений они аналогичны с такими же погрешностями измерений.

Факторы влияющие на погрешность измерений.

Погрешности возникают по разным причинам: это могут быть ошибки экспериментатора или ошибки из-за применения прибора не по назначению и т.д. Существует ряд понятий которые определяют факторы влияющие на погрешность измерений

Вариация показаний прибора – это наибольшая разность показаний полученных при прямом и обратном ходе при одном и том же действительном значении измеряемой величины и неизменных внешних условиях.

Класс точности прибора – это обобщенная характеристика средств измерений (прибора), определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами средств измерений, влияющих на точность, значение которой устанавливаются на отдельные виды средств измерений.

Классы точности прибора устанавливают при выпуске, градуируя его по образцовому прибору в нормальных условиях.

Прецизионность — показывает, как точно или отчетливо можно произвести отсчет. Она определяется, тем насколько близки друг к другу результаты двух идентичных измерений.

Разрешение прибора — это наименьшее изменение измеряемого значения, на которое прибор будет реагировать.

Диапазон прибора — определяется минимальным и максимальным значением входного сигнала, для которого он предназначен.

Полоса пропускания прибора — это разность между минимальной и максимальной частотой, для которых он предназначен.

Чувствительность прибора — определяется, как отношение выходного сигнала или показания прибора к входному сигналу или измеряемой величине.

Шумы — любой сигнал не несущий полезной информации.

Оценка точности результатов опыта обязательна, так как полученные значения могут лежать в пределах возможной погрешности опыта, а выведенные закономерности – оказаться неясными и даже неверными. Точность есть степень соответствия результатов измерений действительному значению измеряемой величины. Понятие точности связано спонятием погрешности : чем выше точность, тем меньше погрешность измерений, и наоборот. Самые точные приборы не могут показать действительного значения величины, их показания содержат погрешность.

Разность между действительным значением измеряемой величины и измеренным называется абсолютной погрешностью измерения. Практически под абсолютной погрешностью понимают разность между результатом измерения при помощи более точных методов или приборов высшей точности (образцовых) и значением этой величины, полученным прибором, применяемым в исследовании:

Абсолютная погрешность не может, однако, служить мерой точности, так как, например, при = 100 мм достаточно мала, но при = 1 мм очень велика. Поэтому для оценки точности измерений вводится понятие относительной погрешности , равной отношению абсолютной погрешности результата измерений к измеряемой величине

. (1.8)

За меру точности измеряемой величины понимают величину, обратную . Следовательно, чем меньше относительная погрешность , тем выше точность измерений . Например, если относительная ошибка измерений получена равной 2 %, то говорят, что измерения выполнены с погрешностью не более 2 % или с точностью не менее 0,5 %, или с точностью не менее 1/0,02 = 50. Не следует использовать термин "точность" взамен терминов "абсолютная погрешность" и "относительная погрешность". Например, неправильно говорить "масса измерена с точностью 0,1 мг", так как 0,1 мг не точность, а абсолютная погрешность измерения массы.

Различают систематические, случайные и грубые погрешности измерений.

Систематические погрешности связаны в основном с погрешностями средств измерений и остаются постоянными при повторных измерениях.

Случайные погрешности вызываются неконтролируемыми обстоятельствами, например, трением в приборах. Случайные погрешности измерений можно выразить несколькими понятиями.

Под предельной (максимальной) абсолютной погрешностью понимают такое её значение, при котором вероятность попадания погрешности в интервал настолько велика, что событие можно считать практически достоверным. При этом лишь в отдельных случаях погрешность может выйти за пределы указанного интервала. Измерение с такой погрешностью называют грубым (или промахом) и при обработке результатов исключают из рассмотрения.

Значение измеряемой величины можно представить формулой

что следует читать так: истинное значение измеряемой величины находится в пределах от до .

Способ обработки опытных данных зависит от характера измерений , которые могут быть прямыми и косвенными, однократными и многократными . Однократно производятся измерения величин, когда невозможно или затруднительно повторно произвести условия измерения. Обычно это имеет место при измерениях в производственных, а иногда и лабораторных условиях.

Значение измеряемой величины при однократном измерении прибором может отличаться от истинных значений не более чем на значение предельной погрешности, допускаемой классом точности прибора ,

. (1.9)

Как следует из соотношения (1.9), класс точности прибора выражает наибольшую допустимую погрешность в процентах от номинального значения (предельного) шкалы прибора. Все приборы делятна восемь классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5 и 4,0.

Необходимо помнить о том, что класс точности прибора ещё не характеризует точность измерений, получаемую при пользовании этим прибором, так как относительная погрешность измерения в начальной части шкалы больше (точность меньше), чем в конечной части шкалы при почти неизменной абсолютной погрешности. Именно наличием этого свойства показывающих приборов объясняется стремление выбирать предел измерения прибора таким образом, чтобы в процессе эксплуатации прибора отсчёт по шкале производился в области между серединой шкалы и её конечной отметкой или, говоря другими словами, во второй половине шкалы .

Пример . Пусть ваттметром на 250 Вт ( = 250 Вт) с классом точности = 0,5 измерена мощность = 50 Вт. Требуется определить предельную абсолютную погрешность и относительную погрешность измерения. Для этого прибора в любой части шкалы допускается абсолютная погрешность, равная 0,5 % от верхнего предела измерения, т. е. от 250 Вт, что составляет

Предельная относительная погрешность при измеренной мощности 50 Вт

.

Из этого примера видно, что класс точности прибора (= 0,5) и предельная относительная погрешность измерения в произвольной точке шкалы прибора (в примере 2,5 % для 50 Вт) в общем случае не равны (они равны только для номинального значения шкалы прибора).

К косвенным измерениям обращаются, когда прямые измерения искомой величины неосуществимы или затруднены. Косвенные измерения сводятся к измерению независимых величин А, В, С…, связанных с искомой величиной функциональной зависимостью
.



Предельная относительная погрешность косвенных измерений величины равна дифференциалу её натурального логарифма, причём следует брать сумму абсолютных значений всех членов такого выражения (брать со знаком плюс):

При теплотехнических экспериментах для определения теплопроводности материала , коэффициентов теплоотдачи и теплопередачи прибегают к косвенным измерениям. В качестве примера рассмотрим вычисление предельной относительной погрешности при косвенном измерении теплопроводности .

Теплопроводность материала по методу цилиндрического слоя выражается уравнением

.

Логарифм этой функции имеет вид

а дифференциал с учётом правила знаков (всё берётся с плюсом)

Тогда относительная погрешность измерения теплопроводности материала, считая и , определится выражением

Абсолютная погрешность измерения длины и диаметра трубы принимается равной половине цены наименьшего деления шкалы линейки или штангенциркуля, температуры и теплового потока – по показаниям соответствующих приборов с учётом их класса точности.

При определении значений случайных погрешностей, кроме предельной погрешности вычисляют статистическую погрешность неоднократных (нескольких) измерений. Эту погрешность устанавливают после измерений при помощи методов математической статистики и теории ошибок.

В качестве приближённого значения измеряемой величины теория ошибок рекомендует использовать среднее арифметическое :

, (1.12)

где – число измерений величины .

Для оценки достоверности результатов измерений, принимаемых равными среднему значению , служитсреднее квадратичное отклонение результата нескольких измерений (среднего арифметического)

Погрешность результата измерения - отклонение результата измерения от истинного (действительного) значения измеряемой величины:

Так как истинное значение измеряемой величины всегда неизвестно и на практике мы имеем дело с действительными значениями величин Хд , то формула для определения погрешности в связи с этим приобретает вид:

Основные источники погрешности результата измерений

источники появления погрешностей измерений:

· неполное соответствие объекта измерений принятой его модели;

· неполное знание измеряемой величины;

· неполное знание влияния условий окружающей среды на измерение;

· несовершенное измерение параметров окружающей среды;

· конечная разрешающая способность прибора или порог его чувствительности;

· неточность передачи значения единицы величины от эталонов к рабочим средствам измерений;

· неточные знания констант и других параметров, используемых в алгоритме обработки результатов измерения;

· аппроксимации и предположения, реализуемые в методе измерений;

· субъективная погрешность оператора при проведении измерений;

· изменения в повторных наблюдениях измеряемой величины при очевидно одинаковых условиях и другие.

Методическая погрешность возникает из-за недостатков используемого метода измерений. Чаще всего это является следстви-ем различных допущений при использовании эмпирических зави-симостей между измеряемыми величинами или конструктив-ных упрощений в приборах, используемых в данном методе измерений.
Субъективная погрешность связана с такими индивидуальными особенностями операторов, как внимательность, сосредоточенность, быстрота реакции, степень профессиональной подготовленности. Такие погрешности чаще встречаются при большой доле ручного труда при проведении измерений и почти отсутствуют при использовании автоматизированных средств измерений.

Классификация погрешностей измерений по форме представления погрешности и по характеру изменения результатов при повторных измерениях

По форме представления

Абсолютная погрешность - является оценкой абсолютной ошибки измерения. Вычисляется разными способами. Способ вычисления определяется распределением случайной величины . Соответственно, величина абсолютной погрешности в зависимости от распределения случайной величины может быть различной. Если - измеренное значение, а - истинное значение, то неравенство должно выполняться с некоторой вероятностью, близкой к 1. Если случайная величина распределена по нормальному закону , то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение . Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

Существует несколько способов записи величины вместе с её абсолютной погрешностью.

· Обычно используется запись со знаком ± . Например, рекорд в беге наHYPERLINK "https://ru.wikipedia.org/wiki/%D0%91%D0%B5%D0%B3_%D0%BD%D0%B0_100_%D0%BC%D0%B5%D1%82%D1%80%D0%BE%D0%B2" HYPERLINK "https://ru.wikipedia.org/wiki/%D0%91%D0%B5%D0%B3_%D0%BD%D0%B0_100_%D0%BC%D0%B5%D1%82%D1%80%D0%BE%D0%B2"100 метров , установленный в 1983 году, равен 9,930±0,005 с .

· Для записи величин, измеренных с очень высокой точностью, используется другая запись: цифры, соответствующие погрешности последних цифр мантиссы , дописываются в скобках. Например, измеренное значение постоянной Больцмана равно 1,3806488(13)×10 −23 Дж /К , что также можно записать значительно длиннее как 1,3806488×10 −23 ±0,0000013×10 −23 Дж/К .

Относительная погрешность - погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или среднему значению измеряемой величины (РМГ 29-99): , .

Относительная погрешность является безразмерной величиной ; её численное значение может указываться, например, в процентах .

Приведённая погрешность - погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле , где - нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

· если шкала прибора односторонняя, то есть нижний предел измерений равен нулю, то определяется равным верхнему пределу измерений;

· если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.

Приведённая погрешность также является безразмерной величиной.

По характеру проявления (свойствам погрешностей) они разделяются на систематические и случайные, по способам выражения - на абсолютные и относительные.
Абсолютная погрешность выражается в единицах измеряемой величины, а относительная погрешность представляет собой отношение абсолютной погрешности к измеренному (действительному) значению величины и ее численное значение выражается либо в процентах, либо в долях единицы.
Опыт проведения измерений показывает, что при многократ-ных измерениях одной и той же неизменной физической величины при постоянных условиях погрешность измерений можно представить в виде двух слагаемых, которые по-разному проявляются от измерения к измерению. Существуют факторы, постоянно или закономерно изменяющиеся в процессе проведения измерений и влияющие на результат измерений и его погрешность. Погрешности, вызываемые такими факторами, называются систематическими.
Систематическая погрешность – составляющая погреш-ности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины. В зависимости от характера изменения систематические погрешности подразделяются на постоянные, прогрессирующие, периодические, изменяющиеся по сложному закону.
Близость к нулю систематической погрешности отражает правильность измерений .
Систематические погрешности обычно оцениваются либо путем теоретическогоанализа условий измерения , основываясь на известных свойствах средств измерений, либо использованием более точных средствизмерений . Как правило, систематические погрешности стараются исключить с помощью поправок. Поправка представляет собой значение величины, вводимое в неисправленный результата измерения с целью исключения систематической погрешности. Знак поправки противоположен знаку величины. На возникновение погрешностей влияют также и факторы, нерегулярно появляющиеся и неожиданно исчезающие. Причем интенсивность их тоже не остается постоянной. Результаты измерения в таких условиях имеют различия, которые индивидуально непредсказуемы, а присущие им закономерности проявляются лишь при значительном числе измерений. Погрешности, появляющиеся в результате действия таких факторов, называются случайными погрешностями .
Случайная погрешность – составляющая погрешности измерения, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях одной и той же величины, проведенных с одинаковой тщательностью.
Незначительность случайных погрешностей говорит о хорошей сходимостиизмерений, то есть о близости друг к другу результатов измерений, выполненных повторно одними и теми же средствами, одним и тем же методом, в одинаковых условиях и с одинаковой тщательностью.
Обнаруживаются случайные погрешности путем повторных измерений одной и той же величины в одних и тех же условиях. Они не могут быть исключены опытным путем, но могут быть оценены при обработке результатов наблюдений. Деление погрешностей измерений на случайные и систематические очень важно, т.к. учет и оценка этих составляющих погрешности требует разных подходов.
Факторы, вызывающие погрешности, как правило, можно свести к общему уровню, когда влияние их на формирование погрешности является более или менее одинаковым. Однако некоторые факторы могут проявляться неожиданно сильно, например, резкое падение напряжения в сети. В таком случае могут возникать погрешности, существенно превышающие погрешности, оправданные условиями измерений, свойствами средств измерений и метода измерений, квалификацией оператора. Такие погрешности называются грубыми, или промахами .
Грубая погрешность (промах ) – погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных значений погрешности. Грубые погрешности необходимо всегда исключать из рассмотрения, если известно, что они являются результатом очевидных промахов при проведении измерений. Если же причины появления резко выделяющихся наблюдений установить нельзя, то для решения вопроса об их исключении используют статистические методы. Существует несколько критериев, которые позволяют выявить грубые погрешности. Некоторые из них рассмотрены ниже в разделе об обработке результатов измерений.