Психология

Сформулируйте основные свойства неопределенного интеграла. Простейшие свойства интегралов. Основные свойства определенного интеграла

Первообразная функция и неопределённый интеграл

Факт 1. Интегрирование - действие, обратное дифференцированию, а именно, восстановление функции по известной производной этой функции. Восстановленная таким образом функция F (x ) называется первообразной для функции f (x ).

Определение 1. Функция F (x f (x ) на некотором промежутке X , если для всех значений x из этого промежутка выполняется равенство F "(x )=f (x ), то есть данная функция f (x ) является производной от первообразной функции F (x ). .

Например, функция F (x ) = sin x является первообразной для функции f (x ) = cos x на всей числовой прямой, так как при любом значении икса (sin x )" = (cos x ) .

Определение 2. Неопределённым интегралом функции f (x ) называется совокупность всех её первообразных . При этом употребляется запись

f (x )dx

,

где знак называется знаком интеграла, функция f (x ) – подынтегральной функцией, а f (x )dx – подынтегральным выражением.

Таким образом, если F (x ) – какая-нибудь первообразная для f (x ) , то

f (x )dx = F (x ) +C

где C - произвольная постоянная (константа).

Для понимания смысла множества первообразных функции как неопределённого интеграла уместна следующая аналогия. Пусть есть дверь (традиционная деревянная дверь). Её функция - "быть дверью". А из чего сделана дверь? Из дерева. Значит, множеством первообразных подынтегральной функции "быть дверью", то есть её неопределённым интегралом, является функция "быть деревом + С", где С - константа, которая в данном контексте может обозначать, например, породу дерева. Подобно тому, как дверь сделана из дерева при помощи некоторых инструментов, производная функции "сделана" из первообразной функции при помощи формулы, которую мы узнали, изучая производную .

Тогда таблица функций распространённых предметов и соответствующих им первообразных ("быть дверью" - "быть деревом", "быть ложкой" - "быть металлом" и др.) аналогична таблице основных неопределённых интегралов, которая будет приведена чуть ниже. В таблице неопределённых интегралов перечисляются распространённые функции с указанием первообразных, из которых "сделаны" эти функции. В части задач на нахождение неопределённого интеграла даны такие подынтегральные функции, которые без особых услилий могут быть проинтегрированы непосредственно, то есть по таблице неопределённых интегралов. В задачах посложнее подынтегральную функцию нужно предварительно преобразовать так, чтобы можно было использовать табличные интегралы.

Факт 2. Восстанавливая функцию как первообразную, мы должны учитывать произвольную постоянную (константу) C , а чтобы не писать список первообразной с различными константами от 1 до бесконечности, нужно записывать множество первообразных с произвольной константой C , например, так: 5x ³+С . Итак, произвольная постоянная (константа) входит в выражение первообразной, поскольку первообразная может быть функцией, например, 5x ³+4 или 5x ³+3 и при дифференцировании 4 или 3, или любая другая константа обращаются в нуль.

Поставим задачу интегрирования: для данной функции f (x ) найти такую функцию F (x ), производная которой равна f (x ).

Пример 1. Найти множество первообразных функции

Решение. Для данной функции первообразной является функция

Функция F (x ) называется первообразной для функции f (x ), если производная F (x ) равна f (x ), или, что одно и то же, дифференциал F (x ) равен f (x ) dx , т.е.

(2)

Следовательно, функция - первообразная для функции . Однако она не является единственной первообразной для . Ими служат также функции

где С – произвольная постоянная. В этом можно убедиться дифференцированием.

Таким образом, если для функции существует одна первообразная, то для неё существует бесконечное множество первообразных, отличающихся на постоянное слагаемое. Все первообразные для функции записываются в приведённом выше виде. Это вытекает из следующей теоремы.

Теорема (формальное изложение факта 2). Если F (x ) – первообразная для функции f (x ) на некотором промежутке Х , то любая другая первообразная для f (x ) на том же промежутке может быть представлена в виде F (x ) + C , где С – произвольная постоянная.

В следующем примере уже обращаемся к таблице интегралов, которая будет дана в параграфе 3, после свойств неопределённого интеграла. Делаем это до ознакомления со всей таблицей, чтобы была понятна суть вышеизложенного. А после таблицы и свойств будем пользоваться ими при интегрировании во всей полносте.

Пример 2. Найти множества первообразных функций:

Решение. Находим множества первообразных функций, из которых "сделаны" данные функции. При упоминании формул из таблицы интегралов пока просто примите, что там есть такие формулы, а полностью саму таблицу неопределённых интегралов мы изучим чуть дальше.

1) Применяя формулу (7) из таблицы интегралов при n = 3, получим

2) Используя формулу (10) из таблицы интегралов при n = 1/3, имеем

3) Так как

то по формуле (7) при n = -1/4 найдём

Под знаком интеграла пишут не саму функцию f , а её произведение на дифференциал dx . Это делается прежде всего для того, чтобы указать, по какой переменной ищется первообразная. Например,

, ;

здесь в обоих случаях подынтегральная функция равна , но её неопределённые интегралы в рассмотренных случаях оказываются различными. В первом случае эта функция рассматривается как функция от переменной x , а во втором - как функция от z .

Процесс нахождения неопределённого интеграла функции называется интегрированием этой функции.

Геометрический смысл неопределённого интеграла

Пусть требуется найти кривую y=F(x) и мы уже знаем,что тангенс угла наклона касательной в каждой её точке есть заданная функция f(x) абсциссы этой точки.

Согласно геометрическому смыслу производной, тангенс угла наклона касательной в данной точке кривой y=F(x) равен значению производной F"(x) . Значит, нужно найти такую функцию F(x) , для которой F"(x)=f(x) . Требуемая в задаче функция F(x) является первообразной от f(x) . Условию задачи удовлетворяет не одна кривая, а семейство кривых. y=F(x) - одна из таких кривых, а всякая другая кривая может быть получена из неё параллельным переносом вдоль оси Oy .

Назовём график первообразной функции от f(x) интегральной кривой. Если F"(x)=f(x) , то график функции y=F(x) есть интегральная кривая.

Факт 3. Неопределённый интеграл геометрически представлен семеством всех интегральных кривых , как на рисунке ниже. Удалённость каждой кривой от начала координат определяется произвольной постоянной (константой) интегрирования C .

Свойства неопределённого интеграла

Факт 4. Теорема 1. Производная неопределённого интеграла равна подынтегральной функции, а его дифференциал – подынтегральному выражению.

Факт 5. Теорема 2. Неопределённый интеграл от дифференциала функции f (x ) равен функции f (x ) с точностью до постоянного слагаемого , т.е.

(3)

Теоремы 1 и 2 показывают, что дифференцирование и интегрирование являются взаимно-обратными операциями.

Факт 6. Теорема 3. Постоянный множитель в подынтегральном выражении можно выносить за знак неопределённого интеграла , т.е.

Основные формулы интегрирования получаются путём обращения формул для производных, поэтому перед началом изучения рассматриваемой темы следует повторить формулы дифференцирования 1 основных функций (т.е. вспомнить таблицу производных).

Знакомясь с понятием первообразной, определением неопределённого интеграла и сравнивая операции дифференцирования и интегрирования, студенты должны обратить внимание на то, что операция интегрирования многозначна, т.к. дает бесконечное множество первообразных на рассматриваемом отрезке. Однако фактически решается задача нахождения только одной первообразной, т.к. все первообразные данной функции отличаются друг от друга на постоянную величину

где C – произвольная величина 2 .

Вопросы для самопроверки.

    Дайте определение первообразной функции.

    Что называется неопределённым интегралом?

    Что такое подынтегральная функция?

    Что такое подынтегральное выражение?

    Укажите геометрический смысл семейства первообразных функций.

6. В семействе найдите кривую, проходящую через точку

2. Свойства неопределённого интеграла.

ТАБЛИЦА ПРОСТЕЙШИХ ИНТЕГРАЛОВ

Здесь студенты должны изучить следующие свойства неопределённого интеграла.

Свойство 1. Производная от неопределённого интеграла равна подынтегральной 3 функции (по определению)

Свойство 2. Дифференциал от интеграла равен подынтегральному выражению

т.е. если знак дифференциала стоит перед знаком интеграла, то они взаимно уничтожаются.

Свойство 3. Если знак интеграла стоит перед знаком дифференциала, то они взаимно уничтожаются, а к функции добавляется произвольная постоянная величина

Свойство 4. Разность двух первообразных одной и той же функции есть величина постоянная.

Свойство 5. Постоянный множитель можно выносить из-под знака интеграла

где А – постоянное число.

Кстати, это свойство легко доказывается дифференцированием обеих частей равенства (2.4) с учётом свойства 2.

Свойство 6. Интеграл от суммы (разности) функции равен сумме (разности) интегралов от этих функций (если они порознь существуют)

Это свойство также легко доказывается дифференцированием.

Естественное обобщение свойства 6

. (2.6)

Рассматривая интегрирование как действие, обратное дифферен-цированию, непосредственно из таблицы простейших производных можно получить таблицу следующую простейших интегралов.

Таблица простейших неопределённых интегралов

1. , где, (2.7)

2. , где, (2.8)

4. , где,, (2.10)

9. , (2.15)

10. . (2.16)

Формулы (2.7) – (2.16) простейших неопределённых интегралов следует выучить наизусть. Знание их необходимо, но далеко не достаточно для того, чтобы научиться интегрировать. Устойчивые навыки в интегрировании достигаются только решением достаточно большого числа задач (обычно порядка 150 – 200 примеров различных типов).

Ниже приводятся примеры упрощения интегралов путём преобразования их к сумме известных интегралов (2.7) – (2.16) из вышеприведённой таблицы.

Пример 1.

.

В дифференциальном исчислении решается задача:под анной функции ƒ(х) найти ее производную (или дифференциал). Интегральное исчисление решает обратную задачу: найти функцию F(x), зная ее производную F " (x)=ƒ(х) (или дифференциал). Искомую функцию F(x) называют первообразной функции ƒ(х) .

Функция F(x) называетсяпервообразной функции ƒ(х) на интервале (а; b), если для любого х є (а;b) выполняется равенство

F " (x)=ƒ(x) (или dF(x)=ƒ(x)dx).

Например , первообразной функции у=х 2 , х є R, является функция, так как

Очевидно, что первообразными Будут также любые функции

где С - постоянная, поскольку

Tеоpeмa 29. 1. Если функция F(x) является первообразной функции ƒ(х) на (а;b), то множество всех первообразных для ƒ(х) задается формулой F(x)+С, где С - постоянное число.

▲ Функция F(x)+С является первообразной ƒ(х).

Действительно, (F(x)+C) " =F " (x)=ƒ(x).

Пусть Ф(х) - некоторая другая, отличная от F(x), первообразная функции ƒ(х) , т. е. Ф " (x)=ƒ(х). Тогда для любого х є (а;b) имеем

А это означает (см. следствие 25. 1), что

где С - постоянное число. Следовательно, Ф(х)=F(x)+С.▼

Множество всех пepвoобpaзныx функций F(x)+С для ƒ(х) называетсянеопределенным интегралом от функции ƒ(х) и обозначается символом∫ ƒ(х) dx.

Таким образом, по определению

∫ ƒ(x)dx= F(x)+C.

Здесь ƒ(х) называетсяподынтегральнoй функцией , ƒ(x)dx — подынтегральным выражением, х -переменной интегрирования , ∫ -знаком неопределенного интеграла .

Операция нахождения неопределенного интеграла от функции называется интегрированием этой функции.

Геометрически неопределенный интеграл представляет собой семейство «параллельных» кривых у=F(x)+C (каждому числовому значению С соответствует определенная кривая семейства) (см. рис. 166). График каждой первообразной (кривой) называетсяинтегральной кривой .

Для всякой ли функции существует неопределенный интеграл?

Имеет место теорема, утверждающая, что «всякая непрерывная на (а;b) функция имеет на этом промежутке первообразную», а следoвaтельно, и неопределенный интеграл.

Отметим ряд свойств неопределенного интеграла, вытекающих из его определения.

1. Дифференциал от неопределенного интеграла равен подынтегральному выражению, а производная неопределенного интеграла равна подынтегральной функции:

d(ƒ(x)dx)=ƒ(x)dх, (ƒ(x)dx) " =ƒ(х).

Дeйcтвительнo, d(∫ ƒ(х) dx)=d(F(x)+С)=dF(x)+d(C)=F " (x) dx =ƒ(х) dx

(ƒ (x) dx) " =(F(x)+C)"=F"(x)+0 =ƒ (x).

Блaгoдapя этому свойству правильность интегрирования проверяется дифференцированием. Например, равенство

∫(3x 2 + 4) dx=х з +4х+С

верно, так как (х 3 +4х+С)"=3x 2 +4.

2. Hеопpедeлeнный интеграл от диффepeнциaла некоторой функции равен сумме этой функции и произвольной постоянной:

∫dF(x)= F(x)+C.

Действительно,

3. Постоянный множитель можно выносить за знак интеграла:

α ≠ 0 - постоянная.

Действительно,

(положили С 1 /а=С.)

4. Неопределенный интеграл от aлгeбpaическoй суммы конечного числа непрерывных функций равен aлгебpaичecкoй сумме интегралов от слагаемых функций:

Пусть F"(x)=ƒ(х) и G"(x)=g(x). Тогда

где С 1 ±С 2 =С.

5. (Инвариантность формулы интегрирования).

Если, где u=φ(х) - произвольная функция, имеющая непрерывную производную.

▲ Пусть х - независимая переменная, ƒ(х) - непрерывная функция и F(x) - ее пepвoобpaзнaя. Тогда

Положим теперь u=ф(х), где ф(х) - непрерывно-дифференцируемая функция. Рассмотрим сложную функцию F(u)=F(φ(x)). В силу инвараинтности формы первого дифференциала функции (см. с. 160) имеем

Отсюда▼

Таким образом, формула для неопределенного интеграла остается справедливой независимо от того, является ли переменная интегрирования независимой переменной или любой функцией от нее, имеющей непрерывную производную.

Так, из формулыпутем замены х на u (u=φ(х))получаем

В частности,

Пример 29.1. Найти интеграл

где С=C1+С 2 +С 3 +С 4 .

Пример 29.2. Найти интеграл Решение:

  • 29.3. Таблица основных неопределенных интегралов

Пользуясь тем, что интегрирование есть действие, обратное дифференцированию, можно получить таблицу основных интегралов путем обращения соответствующих формул диффepeнциaльнoгo исчисления (таблица дифференциалов) и использования свойств неопределенного интеграла.

Например , так как

d(sin u)=cos u . du,

Вывод ряда формул таблицы будет дан при рассмотрении основных методов интегрирования.

Интегралы в приводимой ниже таблице называются табличными. Их следует знать наизусть. В интегральном исчислении нет простых и универсальных правил отыскания первообразных от элементарных функций, как в дифференциальном исчислении. Методы нахождения пepвoобpaзных (т. е. интегрирования функции) сводятся к указанию приемов, приводящих данный (искомый) интеграл к табличному. Следовательно, необходимо знать табличные интегралы и уметь их узнавать.

Отметим, что в таблице основных интегралов переменная интегрирования и может обозначать как независимую переменную, так и функцию от независимой переменной (coгласнo свойству инвариантности формулы интeгpиpoвания).

В справедливости приведенных ниже формул можно убедиться, взяв диффepeнциaл правой части, который будет равен подынтегральному выражению в левой части формулы.

Докажем, например, справедливость формулы 2. Функция 1/u определена и непрерывна для всех значений и, отличных от нуля.

Если u > 0, то ln|u|=lnu, тогда Поэтому

Eсли u<0, то ln|u|=ln(-u). Но Значит

Итак, формула 2 верна. Aнaлoгичнo, провepим формулу 15:

Таблица оснoвныx интегралов



Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.

Пусть функция y = f (x ) определена на отрезке [a , b ], a < b . Выполним следующие операции:

1) разобьем [a , b ] точками a = x 0 < x 1 < ... < x i - 1 < x i < ... < x n = b на n частичных отрезков [x 0 , x 1 ], [x 1 , x 2 ], ..., [x i - 1 , x i ], ..., [x n - 1 , x n ];

2) в каждом из частичных отрезков [x i - 1 , x i ], i = 1, 2, ... n , выберем произвольную точку и вычислим значение функции в этой точке: f (z i ) ;

3) найдем произведения f (z i ) · Δx i , где – длина частичного отрезка [x i - 1 , x i ], i = 1, 2, ... n ;

4) составиминтегральную сумму функции y = f (x ) на отрезке [a , b ]:

С геометрической точки зрения эта сумма σ представляет собой сумму площадей прямоугольников, основания которых – частичные отрезки [x 0 , x 1 ], [x 1 , x 2 ], ..., [x i - 1 , x i ], ..., [x n - 1 , x n ], а высоты равны f (z 1 ) , f (z 2 ), ..., f (z n ) соответственно (рис. 1). Обозначим через λ длину наибольшего частичного отрезка:

5) найдем предел интегральной суммы, когда λ → 0.

Определение. Если существует конечный предел интегральной суммы (1) и он не зависит ни от способа разбиения отрезка [a , b ] на частичные отрезки, ни от выбора точек z i в них, то этот предел называется определенным интегралом от функции y = f (x ) на отрезке [a , b ] и обозначается

Таким образом,

В этом случае функция f (x ) называется интегрируемой на [a , b ]. Числа a и b называются соответственно нижним и верхним пределами интегрирования, f (x ) – подынтегральной функцией, f (x ) dx – подынтегральным выражением, x – переменной интегрирования; отрезок [a , b ] называется промежутком интегрирования.

Теорема 1. Если функция y = f (x ) непрерывна на отрезке [a , b ], то она интегрируема на этом отрезке.

Определенный интеграл с одинаковыми пределами интегрирования равен нулю:

Если a > b , то, по определению, полагаем

2. Геометрический смысл определенного интеграла

Пусть на отрезке [a , b ] задана непрерывная неотрицательная функция y = f (x ) . Криволинейной трапецией называется фигура, ограниченная сверху графиком функции y = f (x ) , снизу – осью Ох, слева и справа – прямыми x = a и x = b (рис. 2).

Определенный интеграл от неотрицательной функции y = f (x ) с геометрической точки зрения равен площади криволинейной трапеции, ограниченной сверху графиком функции y = f (x ) , слева и справа – отрезками прямых x = a и x = b , снизу – отрезком оси Ох.

3. Основные свойства определенного интеграла

1. Значение определенного интеграла не зависит от обозначения переменной интегрирования:

2. Постоянный множитель можно выносить за знак определенного интеграла:

3. Определенный интеграл от алгебраической суммы двух функций равен алгебраической сумме определенных интегралов от этих функций:

4.Если функция y = f (x ) интегрируема на [a , b ] и a < b < c , то

5. (теорема о среднем) . Если функция y = f (x ) непрерывна на отрезке [a , b ], то на этом отрезке существует точка , такая, что

4. Формула Ньютона–Лейбница

Теорема 2. Если функция y = f (x ) непрерывна на отрезке [a , b ] и F (x ) – какая-либо ее первообразная на этом отрезке, то справедлива следующая формула:

которая называется формулой Ньютона–Лейбница. Разность F (b ) - F (a ) принято записывать следующим образом:

где символ называется знаком двойной подстановки.

Таким образом, формулу (2) можно записать в виде:

Пример 1. Вычислить интеграл

Решение. Для подынтегральной функции f (x ) = x 2 произвольная первообразная имеет вид

Так как в формуле Ньютона-Лейбница можно использовать любую первообразную, то для вычисления интеграла возьмем первообразную, имеющую наиболее простой вид:

5. Замена переменной в определенном интеграле

Теорема 3. Пусть функция y = f (x ) непрерывна на отрезке [a , b ]. Если:

1) функция x = φ (t ) и ее производная φ "(t ) непрерывны при ;

2) множеством значений функции x = φ (t ) при является отрезок [a , b ];

3) φ (a ) = a , φ (b ) = b , то справедлива формула

которая называется формулой замены переменной в определенном интеграле.

В отличие от неопределенного интеграла, в данном случае нет необходимости возвращаться к исходной переменной интегрирования – достаточно лишь найти новые пределы интегрирования α и β (для этого надо решить относительно переменной t уравнения φ (t ) = a и φ (t ) = b ).

Вместо подстановки x = φ (t ) можно использовать подстановку t = g (x ) . В этом случае нахождение новых пределов интегрирования по переменной t упрощается: α = g (a ) , β = g (b ) .

Пример 2 . Вычислить интеграл

Решение. Введем новую переменную по формуле . Возведя в квадрат обе части равенства , получим 1 + x = t 2 , откуда x = t 2 - 1, dx = (t 2 - 1)"dt = 2tdt . Находим новые пределы интегрирования. Для этого в формулу подставим старые пределы x = 3 и x = 8. Получим: , откуда t = 2 и α = 2; , откуда t = 3 и β = 3. Итак,

Пример 3. Вычислить

Решение. Пусть u = ln x , тогда , v = x . По формуле (4)

Первообразная и неопределенный интеграл.

Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x), что выполняется равенство для любого х из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство . Таким образом, функция f(x) имеет множество первообразных F(x)+C, для произвольной константы С, причем эти первообразные отличаются друг от друга на произвольную постоянную величину.

Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называют подынтегральным выражением, а f(x) – подынтегральной функцией. Подынтегральное выражение представляет собой дифференциал функции f(x).

Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

Табличные интегралы


Простейшие свойства интегралов

1. Производная результата интегрирования равна подынтегральной функции.

2. Неопределенный интеграл дифференциала функции равен сумме самой функции и произвольной константы.

3. Коэффициент можно выносить за знак неопределенного интеграла.

4. Неопределенный интеграл суммы/разности функций равен сумме/разности неопределенных интегралов функций.

Промежуточные равенства первого и второго свойств неопределенного интеграла приведены для пояснения.

Для доказательства третьего и четвертого свойств достаточно найти производные от правых частей равенств:

Эти производные равны подынтегральным функциям, что и является доказательством в силу первого свойства. Оно же используется в последних переходах.

Таким образом, задача интегрирования является обратной задаче дифференцирования, причем между этими задачами очень тесная связь:

первое свойство позволяет проводить проверку интегрирования. Чтобы проверить правильность выполненного интегрирования достаточно вычислить производную полученного результата. Если полученная в результате дифференцирования функция окажется равной подынтегральной функции, то это будет означать, что интегрирование проведено верно;



второе свойство неопределенного интеграла позволяет по известному дифференциалу функции найти ее первообразную. На этом свойстве основано непосредственное вычисление неопределенных интегралов.

1.4.Инвариантность форм интегрирования.

Инвариантное интегрирование - вид интегрирования для функций, аргументом которых являются элементы группы или точки однородного пространства (любую точку такого пространства можно перевести в другую заданным действием группы).

функции f(x)сводится к вычислению интеграла от дифференциальной формы f.w, где

Явная ф-ла для r(х)приводится ниже. Условие согласования имеет вид .

здесь Tg означает оператор сдвига на X с помощью gОG: Tgf(x)=f(g-1x). Пусть X=G - топология, группа, действующая на себе левыми сдвигами. И. и. существует тогда и только тогда, когда G локально компактна (в частности, на бесконечномерных группах И. и. не существует). Для подмножества И. и. характеристических функции cA (равной 1 на A и 0 вне А)задаёт левую меру Xаара m(A). Определяющим свойством этой меры является её инвариантность при левых сдвигах: m(g-1A)=m(А)для всех gОG. Левая мера Хаара на группе определена однозначно с точностью до положит, скалярного множителя. Если известна мера Хаара m, то И. и. функции f даётся формулой . Аналогичными свойствами обладает правая мера Хаара. Существует непрерывный гомоморфизм (отображение, сохраняющее групповое свойство) DG группы G в группу (относительно умножения) положит. чисел, для которого

где dmr и dmi - правая и левая меры Хаара. Функцию DG(g) наз. модулем группы G. Если , то группа G наз. унимодулярной; в этом случае правая и левая меры Хаара совпадают. Компактные, полупростые и нильпотентные (в частности, коммутативные) группы унимодулярны. Если G - n-мерная группа Ли и q1, ...,qn - базис в пространстве левоинвариантных 1-форм на G, то левая мера Хаара на G задаётся n-формой . В локальных координатах для вычисления

форм qi можно воспользоваться любой матричной реализацией группы G: матричная 1-форма g-1dg левоинвариантна, а её коэф. являются левоинвариантными скалярными 1-формами, из которых и выбирается искомый базис. Напр., полная матричная группа GL(n, R)унимодулярна и мера Хаара на ней задаётся формой. Пусть X=G/H - однородное пространство, для которого локально компактная группа G является группой преобразований, а замкнутая подгруппа Н - стабилизатором некоторой точки. Для того чтобы на X существовало И. и., необходимо и достаточно, чтобы для всех hОH выполнялось равенство DG(h)=DH(h). В частности, это верно в случае, когда Н компактна или полупроста. Полной теории И. и. на бесконечномерных многообразиях не существует.

Замена переменных.