Физика

Кто из ученых открыл закон наследственности. Революционное открытие: законы менделя. Основные положения теории наследственности Менделя

Законы Менделя - принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя . Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности. Хотя в русскоязычных учебниках обычно описывают три закона, «первый закон» не был открыт Менделем. Особое значение из открытых Менделем закономерностей имеет «гипотеза чистоты гамет» .

Энциклопедичный YouTube

    1 / 5

    ✪ Первый и второй законы Менделя. Естествознание 3.2

    ✪ Третий закон Менделя. Естествознание 3.3

    ✪ Урок биологии №20. Грегор Мендель и его Первый закон.

    ✪ Первый и второй законы Менделя супердоходчиво

    ✪ 1 закон Менделя. Закон доминирования.Подготовка к ЕГЭ и ОГЭ по биологии

    Субтитры

Предшественники Менделя

В начале XIX века Дж. Госс (John Goss ), экспериментируя с горохом, показал, что при скрещивании растений с зеленовато-голубыми горошинами и с желтовато-белыми в первом поколении получались жёлто-белые. Однако, при втором поколении, не проявляющиеся у гибридов первого поколения, и названные позже Менделем рецессивными признаки вновь проявлялись, причём растения с ними не давали расщепление при самоопылении .

Таким образом, к середине XIX века было открыто явление доминантности, единообразие гибридов в первом поколении (все гибриды первого поколения похожи друг на друга), расщепление и комбинаторику признаков во втором поколении. Тем не менее, Мендель, высоко оценивая работы предшественников, указывал, что всеобщего закона образования и развития гибридов ими не было найдено, и их опыты не обладают достаточной достоверностью для определения численных соотношений. Нахождение такого достоверного метода и математический анализ результатов, которые помогли создать теорию наследственности, является главной заслугой Менделя .

Методы и ход работы Менделя

  • Мендель изучал, как наследуются отдельные признаки.
  • Мендель выбрал из всех признаков только альтернативные - такие, которые имели у его сортов два чётко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило чётко установить общие закономерности наследования .
  • Мендель спланировал и провёл масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученные гибриды скрещивал между собой. Он изучил наследование семи признаков, изучив в общей сложности около 20 000 гибридов второго поколения. Эксперимент облегчался удачным выбором объекта: горох в норме - самоопылитель , но на нём легко проводить искусственную гибридизацию.
  • Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Закон единообразия гибридов первого поколения (первый закон Менделя) - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей .

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака - на современном языке это означает гомозиготность особей по этому признаку. Понятие гомозиготности было введено позднее У. Бэтсоном в 1902 году .

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.

Кодоминирование и неполное доминирование

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования . Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот .

Скрещиванием организмов двух чистых линий , различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание .

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называется расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Объяснение

Закон чистоты гамет - в каждую гамету попадает только один аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

Закон независимого наследования признаков

Определение

Закон независимого наследования (третий закон Менделя) - при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

Когда скрещивались гомозиготные растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам, и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Объяснение

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом (нуклеопротеидных структур в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи) гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Основные положения теории наследственности Менделя

В современной интерпретации эти положения следующие:

  • За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы - гены (термин «ген» предложен в 1909 г. В.Иогансеном).
  • Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой - от матери.
  • Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).

Условия выполнения законов Менделя

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Условия выполнения закона расщепления при моногибридном скрещивании

Расщепление 3: 1 по фенотипу и 1: 2: 1 по генотипу выполняется приближенно и лишь при следующих условиях:

  1. Изучается большое число скрещиваний (большое число потомков).
  2. Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью).
  3. Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью.
  4. Зиготы (зародыши) с разными генотипами одинаково жизнеспособны.
  5. Родительские организмы принадлежат к чистым линиям, то есть действительно гомозиготны по изучаемому гену (АА и аа).
  6. Признак действительно моногенный

Условия выполнения закона независимого наследования

  1. Все условия, необходимые для выполнения закона расщепления.
  2. Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность).

Условия выполнения закона чистоты гамет

  1. Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.

Биография

Грегор Иоганн Мендель (Gregor Johann Mendel) – выдающийся чешский естествоиспытатель. Он родился в Австрийской империи в простой крестьянской семье. При крещении он получил имя Иоганн.

Изучением природы мальчик увлекался с детства, когда еще работал, сперва помощником садовника, а затем – садовником. Проучившись некоторое время в институте Ольмюца, в философских классах, он в $1843$ году постригся в монахи и принял имя Грегор. Дальше с $1844$ по $1848$ год Грегор Мендель учился в Брюннском богословском институте и стал священником. Во время учебы он самостоятельно изучал многие науки, изучал в Венском университете естественную историю.

Именно в Вене Грегор Мендель увлекся исследованиями процессов гибридизации и статистическими соотношениями гибридов. Мендель уделял особое внимание вопросам изменений качественных признаков у растений. Объектом экспериментов он выбрал горох, который можно было вырастить в монастырском саду. Именно наблюдения за результатами этих исследований и легли в основу знаменитых «законов Менделя».

Воодушевленный первыми успехами, Мендель перенес свои эксперименты на растение семейства астровых (скрещивал разновидности ястребинки) и проводил скрещивания разновидностей пчел. Результаты экспериментов не совпали с результатами опытов с горохом. Тогда еще не знали, что механизм наследования признаков у этих растений и животных отличается от механизма наследования у гороха.

Замечание 1

Грегор Мендель был разочарован в биологической науке. После его назначения настоятелем монастыря, он больше не занимался наукой. Но его заслугой является то, что он впервые выявил и описал статистические закономерности наследования признаков у гибридов. Ознакомимся с ними детальнее.

Первый закон Менделя

Для облегчения учета результатов эксперимента Грегор Мендель избрал растения с четко отличающимися признаками. Это были цвет и форма семян.

Для начала он получил семена «чистых линий» растений. Эти семена при дальнейшем посеве и в результате самоопыления не давали расщепления признаков.

При скрещивании разных сортов гороха - с пурпурными цветками и с белыми цветками, в первом поколении гибридов Мендель получал все растения с пурпурными цветками. Аналогичными были результаты, когда ученый брал растения гороха с желтыми и зелеными семенами или семенами гладкой и морщинистой формы.

По результатам этих опытов Грегор Мендель вывел закон единообразия гибридов первого поколения , который мы знаем, как «первый закон Менделя». Сегодня он звучит так:

«При скрещивании двух гомозиготных организмов. которые относятся к чистым линиям и отличаются друг от друга по одной паре альтернативных проявлений определенного признака, всё первое поколение гибридов (F1) окажется полностью единообразным и будет нести проявление признака только одного из родителей».

Данный закон еще называют законом доминирования признаков . Он означает, что доминирующий признак появляется в фенотипе, подавляя рецессивный.

Второй закон Менделя

Проводя дальнейшие эксперименты с гибридами первого поколения, Мендель обнаружил, что при дальнейшем скрещивании гибридов первого поколения между собой гибриды второго поколений отличаются расщеплением признаков с устойчивым постоянством. Сегодня этот закон формулируют таким образом:

Определение 1

«После скрещивания двух гетерозиготных потомков первого поколения между собой, наблюдается расщепление во втором поколении в определенном числовом соотношении: по фенотипу $3:1$, по генотипу $1:2:1$».

Он получил название закона расщепления . Он означает, что рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и потом проявляется во втором гибридном поколении.

Третий закон Менделя

В первых опытах Грегор Мендель принимал во внимание всего одну пару альтернативных признаков. Он заинтересовался вопросом, что если взять во внимание несколько признаков. Признаки начали комбинироваться между собой и поначалу вызвали у ученого замешательство. Но при более детальном рассмотрении, Менделю удалось вывести закономерность расщепления. Оказалось, что гибриды первого поколения однообразны, а во втором поколении признаки по фенотипу расщепляются в пропорции $9:3:3:1$, независимо от другого признака. Этот закон был назван законом независимого наследования . Сегодня его формулировка выглядит так:

Определение 2

«При скрещивании двух особей, которые отличаются друг от друга по нескольким парам (двум или более) альтернативных признаков, гены и соответствующие им признаки наследуются друг от друга независимо и могут комбинироваться во всех возможных сочетаниях (подобно как при моногибридном скрещивании)».

Закономерности, открытые Менделем предвосхитили начало новой науки – генетики.

Начиная с 1856 года, Грегор Мендель проводил опыты с горохом в монастырском саду.

В своих опытах по скрещиванию гороха Грегор Мендель показал, что наследственные признаки передаются дискретными частицами (которые сегодня называются генами).

Чтобы оценить этот вывод, нужно учесть, что в духе того времени наследственность считалось непрерывной, а не дискретной, в результате чего, как полагали, у потомков признаки предков «усредняются».

В 1865 году он сделал доклад о своих экспериментах в Брюннском (ныне это город Брно в Чехии) обществе естествоиспытателей. На заседании ему не было задано ни одного вопроса. Через год статья Менделя «Опыты над растительными гибридами» была опубликована в трудах этого общества. Том был разослан в 120 университетских библиотек. Кроме этого, автор статьи заказал дополнительно 40 отдельных оттисков своей работы, почти все из которых разослал известным ему ботаникам. Откликов также не последовало…

Вероятно, сам учёный разуверился в своих опытах, поскольку провёл серию новых экспериментов по скрещиванию ястребинки (растение семейства астровых) и затем – по скрещиванию разновидностей пчёл. Результаты, ранее полученные им на горохе, не подтвердились (современные генетики разобрались в причинах этой неудачи). А в 1868 году Грегор Мендель был избран настоятелем монастыря и более к биологическим исследованиями не возвращался.

«Открытие Менделем основных принципов генетики игнорировалось в течение тридцати пяти лет после того, как о нём не только был сделан доклад на заседании научного общества, но даже опубликованы его результаты. По мнению Р. Фишера, каждое последующее поколение склонно замечать в первоначальной статье Менделя только то, что ожидает в ней найти, игнорируя всё остальное. Современники Менделя видели в этой статье лишь повторение хорошо к тому времени известных экспериментов по гибридизации. Следующее поколение поняло важность его находок, относящихся к механизму наследственности, но не смогло полностью оценить их, поскольку эти находки, казалось, противоречили особенно горячо обсуждавшейся в то время теории эволюции. Позвольте, кстати, добавить, что знаменитый статистик Фишер перепроверил результаты Менделя и заявил, что при обработке современными статистическими методами выводы отца генетики демонстрируют явное смещение в пользу ожидавшихся результатов».

Вторичное открытие законов Менделя, развитие концепции гена как элементарной единицы наследственного вещества, передающейся от родителей к потомку, способную мутировать, рекомбинироваться с другими такими же единицами и определять конкретные признаки организма составляют сущность классического этапа в развитии генетики. Механизм наследственности и ее менделевских закономерностей оказался сходным у всех организмов - от высших до простейших. У всех них было установлено наличие генов, передающихся потомству и рекомбинирующихся в нем, их локализация и линейное расположение в хромосомах, составлены генетические карты различных организмов на основе статистических исследований явлений рекомбинации и кроссинговера (обмена гомологичными участками хромосом).

За четверть века после окончания первого этапа развития генетики представления о природе и структуре гена значительно углубились: в исследованиях на микроорганизмах была окончательно доказана сложная структура гена, расширена база объектов генетического анализа. Если объектами исследования для Менделя и первых менделистов были растения и позвоночные животные (грызуны, птицы), обеспечивающие получение потомства при скрещиваниях порядка десятков и сотен особей (этого было вполне достаточно для установления основных менделевских законов), то объектами исследований Моргана стали дрозофилы, обеспечившие получение потомства порядка нескольких десятков тысяч особей (что позволяло анализировать явления сцепления и обмена факторов, локализованных в гомологичных хромосомах).

Таким образом, суть теоретической концепции гена, по Моргану, состоит в следующем: ген - материальная единица наследственности, ответственная за биохимическую активность и фенотипическое различие организмов; гены располагаются в хромосомах в линейном порядке; каждый ген образуется путем удвоения материнского гена. Существенной чертой такого понятия гена было преувеличенное представление об его устойчивости. Фактически длительное время ген трактовался как последняя, далее неразложимая наследственная корпускула, выключенная из метаболизма клетки и организма в целом, остающаяся практически неизменной в условиях воздействия на нее внешних факторов. Соответственно генотип особи зачастую представлялся в виде мозаики генов, а организм в целом - как механическая сумма признаков, определяющихся дискретными наследственными факторами. В методологическом плане слабостью такого представления о гене, о взаимодействии между генотипом и фенотипом особи была механистическая упрощенность, игнорирование диалектических связей внутреннего и внешнего, целостности биологических систем и процессов. Считалось, что причины мутаций - чисто внутренние, что изменчивость имеет автогенетическую природу и что внешнее отделено от внутреннего.

Интенсивный отбор новых экспериментальных данных открыл новые возможности хромосомной теории наследственности. Стали ставиться под сомнение представления о генотипе как простой сумме изолированных генов. Изучение взаимодействия генов привело к тому, что отдельные признаки стали связываться с действием многих генов и одновременно влияние одного гена стало распространяться на многие признаки. Это, в свою очередь, привело к пересмотру представления о генах как жестко обособленных единицах наследственности, к пониманию их взаимосвязи и взаимодействия. Постепенно чисто морфологические подходы к трактовке понятия гена стали все больше дополняться физиологическими и биохимическими трактовками, что в значительной мере расшатывало классическую концепцию гена, вело к установлению связи гена с обменными процессами клетки и организма в целом, к пониманию изменяемости и, следовательно, лишь относительной устойчивости гена. Этот процесс получил мощное ускорение, когда были осуществлены исследования по мутагенному действию рентгеновских лучей и некоторых химических веществ.

Многие из этих новых характеристик гена получили свое теоретическое обобщение в работах самого Моргана. В них эволюцию понятия гена можно проследить довольно отчетливо. Наиболее полно концепция гена Морганом изложена в его нобелевской лекции (в ее первоначальном тексте), прочитанной в июне 1934 г. В ней он ставит вопросы: какова природа элементов наследственности, которые Мендель постулировал как чисто теоретические единицы; что представляют собой гены; имеем ли мы право после того, как локализовали гены в хромосомах, рассматривать их как материальные единицы, как химические тела более высокого порядка, чем молекулы? Ответ на эти вопросы был таков: «Среди генетиков нет согласия в точке зрения на природу генов, - являются ли они реальными или абстракцией, потому что на уровне, на котором находятся современные генетические опыты, не представляет ни малейшей разницы, является ли ген гипотетической или материальной частицей. В обоих случаях эта единица ассоциирована со специфической хромосомой и может быть локализована там путем чисто генети-еского анализа. Поэтому, если ген представляет собой материальную единицу, то он должен быть отнесен к определенному месту в хромосоме, причем к тому же самому, что и при первой гипотезе. Поэтому в практической генетической работе безразлично, какой точки зрения придерживаться» . Однако позже Морган ответит на этот вопрос более определенно: «По-сле данных, полученных в настоящее время, не может быть сомнения, что генетика оперирует с геном, как с материальной частью хромосомы» .

Теория гена Моргана опиралась на экспериментальные данные, в основном относящиеся к клеточному уровню. Эта теория была выдающимся достижением классического периода в развитии генетики. И хотя современные представления о гене от моргановского отличаются довольно сильно, в главных своих чертах эта концепция гена сохраняет свое значение. Это относится, в частности, к моргановскому представлению о генах как единицах наследственности («материализация» гена), к его пониманию необходимости преодоления чисто морфологиче-ских подходов в исследовании материальных основ наследственности, углубления физиологи-ческого анализа до молекулярного уровня, на котором становится возможной расшифровка фи-зико-химических процессов, обеспечивающих действие генов. генетический наследственность мендель ген

Следует отметить тот факт, что еще в конце 20-х годов А.С. Серебровским и его школой было установлено, что один из генов дрозофилы состоит из серии линейно расположенных единиц, различие между которыми выражалось, например, в присутствии или отсутствии некоторых ще-тинок на теле мухи. Это противоречило моргановскому представлению о гене как элементарной, неделимой далее единицы наследственности . Но поскольку в это время моргановская концепция занимала господствующее положение, то новая точка зрения смогла укрепиться лишь тогда, когда развилась генетика микроорганизмов, когда появилась возможность исследовать тонкую структуру гена в физико-химических и молекулярных аспектах. Трудности развития генетической теории были обусловлены и тем, что в методологическом отношении дарвинизм был более продвинут, чем генетика этого периода своего развития (его философская основа может быть квалифицирована как естественно-исторический материализм с элементами диалектики). Поэтому на каждом этапе своего развития генетика проверялась дарвинизмом.

Честь открытия количественных закономерностей, сопровождающих формирование гибридов, принадлежит чешскому монаху, ботанику-любителю Иоганну Грегору Менделю (1822-1884). В его работах, выполнявшихся с 1856 по 1863 гг. были раскрыты основы законов наследственности. В 1865 г. он отсылает в общество естествоиспытателей статью под названием «Опыты над растительными гибридами».

Г.Мендель впервые четко сформулировал понятие дискретного наследственного задатка («ген» - 1903 г., Иогансен). Фундаментальный закон Менделя – закон чистоты гамет.

1902 г. – У.Бэтсон формулирует положение о том, что одинаковые задатки – гомозиготные, разные – гетерозиготные.

Но! Экспериментальные исследования и теоретический анализ результатов скрещиваний, выполненные Менделем, опередили развитие науки более чем на четверть века.

О материальных носителях наследственности, механизмах хранения и передачи генетической информации и внутреннем содержании процесса оплодотворения тогда почти ничего еще не было известно. Даже умозрительные гипотезы о природе наследственности (Ч.Дарвин и др.) были сформулированы позже.

Этим объясняется то, что работа Г.Менделя не получила в свое время никакого признания и осталась неизвестной вплоть до переоткрытия законов Менделя.

В 1900 г. – независимо друг от друга три ботаника –

К. Корренс (Германия) (кукуруза)

Г.де Фриз (Голландия) (мак, дурман)

Э.Чермак (Австрия) (горох)

Обнаружили в своих опытах открытые ранее Менделем закономерности, и, натолкнувшись на его работу, вновь опубликовали ее в 1901 г.

Был установлен (1902 г.) факт, что именно хромосомы несут наследственную информацию (В. Сэттон, Т.Бовери). Это положило начало новому направлению генетики – хромосомной теории наследственности. В 1906 г. У.Бэтсон вводит понятия «генетика», «генотип», «фенотип».

Обоснование хромосомной теории наследственности

В 1901 г. Томас Гент (Хант) Морган (1866-1945) впервые стал проводить опыты на животных моделях – объектом его исследований стала плодовая мушка – Drosophila melanogaster . Особенности мушки:

    Неприхотливость (разведение на питательных средах при температуре 21-25С)

    Плодовитость (за 1 год – 30 поколений; одна самка – 1000 особей; цикл развития – 12 суток: через 20 ч-яйцо, 4 дня – личинка, еще 4 дня – куколка);

    Половой диморфизм: самки крупнее, брюшко заостренное; самцы мельче, брюшко округлое, последний сегмент – черный)

    Большой спектр признаков

    Маленькие размеры (ок.3 мм.)

1910 Г. – т. Морган - Хромосомная теория наследственности:

    Наследственность обладает дискретной природой. Ген – единица наследственности и жизни.

    Хромосомы сохраняют структурную и генетическую индивидуальность в течение всего онтогенеза.

    В R! Гомологичные хромосомы попарно конъюгируют, а затем расходятся, попадая в разные зародышевые клетки.

    В возникших из зиготы соматических клетках набор хромосом состоит из 2-х гомологичных групп (жен., муж.).

    Каждая хромосома играет специфическую роль. Гены расположены линейно и образуют одну группу сцепления.

1911 г. – закон сцепленного наследования признаков (генов) (гены, локализованные в одной хромосоме, наследуются сцеплено).

Таким образом, в развитии генетики выделяется два важных этапа:

1 – открытия Менделя, базирующиеся на гибридологических исследованиях – установление количественных закономерностей в расщеплении признаков при скрещивании.

2 – доказательство того, что носителями наследственных факторов являются хромосомы. Морган сформулировал и экспериментально доказал положение о сцеплении генов в хромосомах.