Биология

Люди — единственная развитая цивилизация во Вселенной? Сколько всего элементарных частиц во Вселенной? Количество вселенных

Американский ученый и известный популяризатор науки Каку Митио написал книгу, в которой спорит со здравым смыслом. Для нормального человека является нормой трехмерный мир, к которому Эйнштейн не без труда прибавил четвертое измерение — время. Но современная физика трудится уже достаточно давно над теорией гиперпространства, согласно которой Вселенная состоит не только из времени и пространства, но и из чего-то другого — пятого измерения, шестого измерения… Человеческий разум сейчас не в силах подобное представить, зато это доступно языку математики.

Большие математические расчеты в рамках теории гиперпространства доказали, что если предположить теоретическое существование иных измерений, то запросто решаются, казалось бы, неразрешимые задачи физики: например, ответ на вопрос о возможном взаимодействии света и тяготения. Более того, открытие новых измерений позволит воедино срастить все еще разрозненные знания об устройстве Вселенной, благодаря чему может появиться искомая с древнейших времен «теория всего». А для того чтобы люди подготовились к ее появлению, Митио перевел с языка формул теорию гиперпространства для людей, живущих в трехмерном мире.

«Русская планета» с разрешения издательства «Альпина Нон-фикшн» публикует фрагмент книги Каку Митио «Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение», посвященный возможности существования нескольких вселенных.

В 1957 году физик Хью Эверетт высказал предположение о том, что в процессе эволюции Вселенная постоянно «раздваивается», как дорога у развилки. В одной Вселенной атом урана не распадается, и кот остается в живых. В другой атом урана распадается, и кот погибает. Если Эверетт прав, существует бесконечное множество вселенных. Каждая вселенная соединена с другими целой сетью «дорожных развилок». Или, как писал аргентинец Хорхе Луис Борхес в «Саду расходящихся тропок», «вечно разветвляясь, время ведет к неисчислимым вариантам будущего».

Физик Брайс Девитт, один из сторонников многомировой теории, описал неизгладимое впечатление, которое она произвела на него: «Каждый квантовый переход, происходящий на каждой звезде, в каждой галактике и каждом отдаленном уголке Вселенной, раскалывают наш местный мир на Земле на мириады копий самого себя. До сих пор отчетливо помню, какое потрясение испытал, впервые столкнувшись с этой концепцией множества миров». Согласно постулату многомировой теории, все возможные квантовые миры существуют. В некоторых мирах, подобно господствующей форме жизни на Земле, живут человеческие существа. В других — события в субатомной сфере препятствовали возникновению человека.

Физик Фрэнк Вильчек писал:

«Говорят, история мира сложилась бы совершенно иначе, если бы у Елены Троянской на носу была бородавка. Так вот, бородавки возникают из-за мутации единственной клетки, нередко вызываемой ультрафиолетовыми лучами солнца. Вывод: существует множество миров, в которых у Елены Троянской действительно была бородавка на носу».

В сущности, идея многочисленности вселенных стара. Святой и философ Альберт Магнус писал: «На самом ли деле существует много миров или есть только один мир? Это один из самых благородных и волнующих вопросов в изучении Природы». Однако древней идее придан современный оттенок: многочисленные миры решают парадокс кота Шрёдингера. В одной вселенной кот может оказаться мертвым, в другой — живым.

Какой бы странной ни казалась многомировая теория Эверетта, можно доказать, что она математически эквивалентна обычной интерпретации квантовой теории. Но так сложилось, что многомировая теория не пользуется популярностью среди физиков. Отвергнуть ее невозможно, но сама идея бесконечного множества в равной степени действительных вселенных, каждая из которых ежеминутно делится надвое, — философский кошмар для физиков, любящих простоту. В физике применяется так называемый принцип Оккама, согласно которому выбирать всегда следует самый простой путь, игнорируя усложненные альтернативы, особенно если они не поддаются измерению.

(Так, принцип Оккама отвергает давнюю теорию эфира, согласно которой некогда всю Вселенную наполнял таинственный газ. Теория эфира давала удобный ответ на каверзный вопрос: если свет — волна и если свет может распространяться в вакууме, тогда что же такое волнообразные колебания? Ответ состоял в том, что эфир, подобно жидкости, совершает колебания даже в вакууме. Эйнштейн доказал необязательность существования эфира. Однако он никогда не утверждал, что эфира не существует — просто сказал, что он нерелевантен. Таким образом, следуя принципу Оккама, физики больше не обращаются к эфиру.)

Можно показать, что связь между многочисленными мирами Эверетта невозможна. Следовательно, каждая вселенная не подозревает о существовании других. Если эксперименты не могут подтвердить существование этих миров, нам следует в соответствии с принципом Оккама исключить их.

Продолжая в том же духе, физики воздерживаются от категорических заявлений о том, что ангелов и чудес не бывает. Возможно, и те, и другие есть. Но чудеса почти по определению не повторяются регулярно, следовательно, их нельзя количественно оценить в ходе эксперимента. Значит, в соответствии с принципом Оккама их надо игнорировать (конечно, если мы не найдем воспроизводимое и измеримое чудо или ангела). Один из авторов многомировой теории, наставник Эверетта Джон Уилер нехотя отвергал и то, и другое, так как «слишком тяжело таскать такой громоздкий метафизический багаж».

Однако ситуацию с непопулярностью многомировой теории может исправить постепенный рост популярности волновой функции Хокинга применительно к Вселенной. В основу теории Эверетта положены одиночные частицы и невозможность коммуникации между вселенными после их разделения. Теория Хокинга, хотя и связана с вышеупомянутой, тем не менее заходит дальше: в ее основе лежит бесчисленное множество самосогласованных вселенных (а не только частиц), и сама теория постулирует возможность туннелирования между ними (по «червоточинам»).

Хокинг даже нашел решение волновой функции Вселенной. Он убежден в правильности своего подхода отчасти потому, что теория четко определена (если, как уже упоминалось, окончательно теория определена в десяти измерениях). Его цель — показать, что волновая функция Вселенной принимает большие значения вблизи вселенной, похожей на нашу. Таким образом, наша вселенная почти наверняка является вселенной, но определенно не единственной.

К настоящему моменту прошел ряд международных конференций, посвященных волновой функции Вселенной. Но, как и прежде, с математической точки зрения волновая функция Вселенной находится за пределами вычислительных способностей людей, живущих на нашей планете, и нам, возможно, придется ждать много лет, прежде чем какой-нибудь энтузиаст найдет точное решение уравнений Хокинга.

Параллельные миры

Главное различие между многомировой теорией Эверетта и волновой функцией Хокинга для Вселенной заключается в центральной идее Хокинга о «червоточинах», соединяющих параллельные вселенные. Однако не стоит воображать, что однажды вы отправитесь домой с работы, откроете дверь, попадете в параллельную вселенную и обнаружите, что ваши близкие никогда о вас не слышали. Вместо того чтобы кинуться встречать вас после трудного дня, ваша семья замечется в панике, завопит, что в доме чужак, и вас арестуют за незаконное вторжение. Подобные сценарии возможны только в кино. Согласно Хокингу, «червоточины» постоянно соединяют нашу Вселенную с миллиардами миллиардов параллельных вселенных, однако в среднем размер этих «червоточин» чрезвычайно мал и сопоставим с планковской длиной (примерно в 100 миллиардов миллиардов раз меньше протона, то есть слишком маленький для перемещения человека). Более того, поскольку крупные квантовые переходы между вселенными — редкое явление, возможно, такого события придется ждать очень долго — дольше, чем существует Вселенная.

Хью Эверетт. Фото: physicsmasterclasses.org

Таким образом, в полном соответствии с законами физики (хотя и крайне маловероятно) кто-нибудь может попасть в параллельную вселенную, парную нашей, которая выглядит в точности как наша, за исключением одного маленького, но важного отличия, возникшего в некий момент времени, когда эти вселенные разделились.

О параллельных мирах такого типа писал Джон Уиндем в рассказе «Поиски наугад» (Random Quest). Британский физик-ядерщик Колин Трэффорд чуть не погибает в 1954 году из-за несчастного случая в ходе опыта. Вместо того чтобы оказаться в больнице, он обнаруживает, что цел и невредим и находится в отдаленном районе Лондона. Трэффорд радуется, что так легко отделался, но вскоре понимает: все-таки что-то произошло. Заголовки в газетах невероятны. Второй мировой войны никогда не было. Ни о какой атомной бомбе и речи нет.

Всемирная история сложилась по-другому. Более того, случайно взглянув на полку в магазине, Трэффорд замечает собственную фамилию и фотографию и обнаруживает, что он автор бестселлера. Он потрясен. Его точная копия существует в этом мире, вдобавок он не физик, а писатель!

Неужели он видит сон? Много лет назад он подумывал стать писателем, а стал физиком. По-видимому, в этой параллельной вселенной был избран иной путь.

Трэффорд листает лондонский телефонный справочник и находит свою фамилию в списке, но адрес, указанный в нем, ему незнаком. Пораженный Трэффорд решает побывать «у себя дома».

В «своей» квартире он изумленно знакомится со «своей» женой, которую никогда прежде не видел, — красивой женщиной, возмущенной «его» многочисленными романами с другими женщинами. Она упрекает его за измены, но замечает, что ее муж чем-то озадачен. Трэффорд обнаруживает, что его двойник — негодяй и распутник, и понимает, что не может дать отпор прекрасной незнакомке, хотя она и считает себя его женой. По-видимому, они с двойником поменялись вселенными.

Постепенно Трэффорд влюбляется в «собственную» жену. И не понимает, как его двойник может столь пренебрежительно обходиться с этой прелестной женщиной. Следующие несколько недель, проведенных вместе, становятся лучшими в их жизни. Трэффорд решает загладить все обиды, которые его двойник нанес жене за долгие годы. Но когда супруги словно узнают друг друга заново, Трэффорд вдруг оказывается заброшенным обратно в свою вселенную и разлучен с любимой. В привычной вселенной он предпринимает отчаянные поиски «своей жены». И узнает, что у людей, живущих в его вселенной, есть двойники в другой — не у всех, но у большинства. Трэффорд приходит к выводу, что у его «жены» должен быть двойник где-то в этом мире.

Как одержимый, он хватается за любую зацепку, старается припомнить все, что ему известно о парных вселенных. Вооружившись познаниями в области истории и физики, он заключает, что два мира разошлись в своем развитии из-за какого-то поворотного события в 1926-м или 1927 го ду . Трэффорд считает, что разделить вселенные мог некий единственный случай.

Тогда он принимается педантично исследовать историю нескольких семей. Он тратит все свои сбережения, опрашивает десятки людей и наконец находит семью «своей жены». В конце концов он обнаруживает в своей вселенной ту самую женщину и женится на ней.

Представление о том, что наша Вселенная может быть лишь одной из множества других, за последние двадцать лет превратилось из научной фантастики в имеющую право на жизнь теорию мультивселенной . Теперь же физики из Стэнфорда (Stanford University) попытались подсчитать, сколько же может существовать таких параллельных миров.

За расчёты взялись Андрей Линде и Виталий Ванчурин. Они исходили из следующих предположений. Сразу после Большого взрыва (Big Bang), который являлся квантовым процессом, вызвавшим различные квантовые колебания, происходило быстрое расширение (инфляция) Вселенной.

Из-за большой скорости вскоре в отдельных регионах квантовые флуктуации были заморожены в виде тех или иных классических условий. Ныне все эти различающиеся области являются отдельными вселенными, и у каждой из них свои законы физики малых энергий.

Линде придерживается инфляционной модели вселенной (Inflationary Multiverse), которую он разработал в начале 1980-х годов совместно с некоторыми другими учёными. Здесь показано развитие мультивселенной во времени, различные цвета обозначают законы физики, характерные для отдельных вселенных (иллюстрация Stanford University).

В своей статье (PDF-документ), которая пока опубликована только на сайте препринтов arXiv.org, авторы работы проанализировали механизм появления тех самых квантовых флуктуаций. И учёные пришли к выводу – количество образовавшихся вселенных равняется десяти в десятой степени в десятой степени в седьмой степени (10^10^10^7). Впрочем, это значение может различаться в зависимости от того, какую модель построить (как отличать отдельные вселенные).

В любом случае число, конечно же, гигантское. Однако наблюдать все вселенные человек не в состоянии, убеждены специалисты из Стэнфорда. Это обусловлено особенностями строения нашего мозга: в течение жизни он не способен воспринять более десяти в шестнадцатой степени (10 16) битов информации (данное предположение выдвинуто в другой работе и поддержано стэнфордскими учёными). В результате получается, что человек не может воспринять более десяти в десятой степени в шестой степени наблюдаемых конфигураций.


Не больше, не меньше – именно столько вселенных, по мнению авторов новой работы, доступно человеческому разуму (иллюстрация Andrei Linde, Vitaly Vanchurin).

И это нормально, утверждают Линде и Ванчурин. Нечего пытаться возвысить себя и полагать, будто все параллельные вселенные доступны человеческому сознанию. К тому же в нашей повседневной жизни квантовые эффекты играют малую роль, а потому мы их можем спокойно игнорировать.

Подобные вычисления действительно мало чем полезны для обывателя и имеют значение, пожалуй, только для физиков и астрономов, изучающих квантовые эффекты на супергалактическом уровне.

Когда мы анализируем возможность существования вселенной определённого типа, мы должны помнить, что существует пара вселенная-наблюдатель, которая собственно её и оживляет, а также, что волновая функция всей остальной мультивселенной зависит от времени, пишут физики.

Зачем же считать параллельные вселенные? Линде и Ванчурин считают – для того чтобы позже определить вероятность существования жизни во Вселенной с каким-то особым набором свойств. А ещё узнать, каковы были шансы, что мы «окажемся» в мире с физическими законами, соответствующими наблюдаемым (что разрешило бы вопросы, связанные с

Бесконечна ли Вселенная, или у неё есть край? Если она бесконечна, это значит, что должны существовать параллельные Вселенные, считает физик Брайан Грин.

Он объяснил эту идею в интервью NPR, используя метафору: «Представим Вселенную в виде колоды карт. Если вы перетасуете карты, произойдёт много изменений, - говорит Брайан Грин. - Если вы будете перетасовывать эту колоду достаточно долго, то порядок карт может повториться. То же самое и с бесконечной Вселенной. При ограниченном наборе сочетаний материи порядок её расположения должен однажды повториться».

По его словам, многие учёные-теоретики серьёзно рассматривают возможность существования Мультивселенной. Вот некоторые из существующих гипотез.

1. Пузыри-вселенные

Космолог Александр Виленкин из Университета Тафтса считает, что отдельные космические зоны после Большого взрыва могли расшириться, что привело к образованию изолированных пузырей-вселенных.

Согласно теории Виленкина, наш пузырь перестал расширяться, что создало определённые условия в нашей Вселенной. Однако другие пузыри могли продолжать расширение, в результате чего физические свойства тех Вселенных абсолютно не похожи на те, что мы наблюдаем в нашей Вселенной.

2. Вселенная как голограмма

Теория струн рассматривает Вселенную как совокупность очень тонких, вибрирующих струн. Эти струны создают силу, известную как гравитация. Мир струн - это своего рода голограмма, проецируемая из более низкого космического измерения, которое проще, более плоское и не имеет гравитации.

3. Огромная пустота в космосе может быть дверью в другую Вселенную

Космическая пустота протяжённостью 1 миллиард световых лет озадачила учёных, когда её открыли в 2007 г. Затем, в 2009 г., была обнаружена ещё одна космическая пустота, простирающаяся на 3,5 миллиарда световых лет. Подобное явление невозможно объяснить современными знаниями о структуре и эволюции Вселенной. Пустоты таких гигантских размеров не могли сформироваться за время, прошедшее с Большого взрыва. На их образование потребовалось бы намного больше времени.

Физик Лора Мерсини-Хьютон, профессор из Университета Северной Каролины, считает, что это след другой Вселенной, которая находится за пределами нашей Вселенной. Согласно её гипотезе, квантовая запутанность между нашей Вселенной и другой Вселенной создала эти пустоты как перегородку между Вселенными.

4. Параллельные Вселенные, которые могут столкнуться друг с другом

Большой взрыв, образовавший Вселенную, мог быть вызван столкновением двух трёхмерных Вселенных в другом космическом пространстве. Большой взрыв может быть всего лишь одним из множества Больших взрывов. Создание Вселенной - это циклический процесс, считают Пол Стейнхард, профессор физики в Принстонском университете, и Нейл Турок, директор Института теоретической физики «Периметр» в Онтарио (Канада).

Их теория частично основана на теории суперструн. В предисловии к своей книге «Бесконечная Вселенная за пределами Большого взрыва» они написали: «Мы убеждены, что момент создания был всего лишь частью бесконечного цикла колоссальных столкновений между нашей Вселенной и параллельным миром».

Версия на английском

Доктор педагогических наук Е. ЛЕВИТАН.

Вглядитесь в недостижимые ранее глубины Вселенной.

Любознательный пилигрим добрался до "края света" и пытается увидеть: а что же там, за краем?

Иллюстрация к гипотезе рождения метагалактик из распадающегося гигантского пузыря. Пузырь вырос до огромных размеров на стадии стремительного "раздувания" Вселенной. (Рисунок из журнала "Земля и Вселенная".)

Не правда ли, странное название статьи? Разве Вселенная не одна? К концу ХХ века выяснилось, что картина мироздания неизмеримо сложнее той, которая представлялась совершенно очевидной сто лет назад. Ни Земля, ни Солнце, ни наша Галактика не оказались центром Вселенной. На смену геоцентрической, гелиоцентрической и галактоцентрической системам мира пришло представление о том, что мы живем в расширяющейся Метагалактике (наша Вселенная). В ней бесчисленное множество галактик. Каждая, как и наша, состоит из десятков или даже сотен миллиардов звезд-солнц. И нет никакого центра. Обитателям каждой из галактик лишь кажется, что именно от них во все стороны разбегаются другие звездные острова. Несколько десятилетий назад астрономы могли лишь предполагать, что где-то существуют планетные системы, подобные нашей Солнечной. Сейчас - с высокой степенью достоверности называют ряд звезд, у которых обнаружены "протопланетные диски" (из них когда-нибудь сформируются планеты), и уверенно говорят об открытии нескольких планетных систем.

Процесс познания Вселенной бесконечен. И чем дальше, тем все более дерзкие, порой кажущиеся совершенно фантастическими, задачи ставят перед собой исследователи. Так почему же не предположить, что астрономы откроют когда-нибудь другие вселенные? Ведь вполне вероятно, что наша Метагалактика - это не вся Вселенная, а только какая-то ее часть...

Едва ли современные астрономы и даже астрономы очень далекого будущего смогут когда-нибудь увидеть собственными глазами другие вселенные. И все же наука уже сейчас располагает некоторыми данными о том, что наша Метагалактика может оказаться одной из множества мини-вселенных.

Вряд ли кто-нибудь сомневается в том, что жизнь и разум могут возникнуть, существовать и развиваться лишь на определенном этапе эволюции Вселенной. Трудно вообразить, что какие-то формы жизни появились раньше, чем звезды и движущиеся вокруг них планеты. Да и не всякая планета, как мы знаем, пригодна для жизни. Необходимы определенные условия: довольно узкий интервал температур, состав воздуха, пригодный для дыхания, вода... В Солнечной системе в таком "поясе жизни" оказалась Земля. А наше Солнце, вероятно, расположено в "поясе жизни" Галактики (на определенном расстоянии от ее центра).

Таким образом сфотографировано много чрезвычайно слабых (по блеску) и далеких галактик. У наиболее ярких из них удалось рассмотреть некоторые подробности: структуру, особенности строения. Блеск самых слабых из получившихся на снимке галактик - 27,5 m , а точечные объекты (звезды) еще слабее (до 28,1 m)! Напомним, что невооруженным глазом люди с хорошим зрением и при самых благоприятных условиях наблюдения видят звезды примерно 6 m (это в 250 миллионов раз более яркие объекты, чем те, у которых блеск 27 m).
Создаваемые ныне подобные наземные телескопы по своим возможностям уже сравнимы с возможностями космического телескопа Хаббла, а в чем-то даже превосходят их.
А какие условия нужны для того, чтобы возникли звезды и планеты? Прежде всего, это связано с такими фундаментальными физическими константами, как постоянная тяготения и константы других физических взаимодействий (слабого, электромагнитного и сильного). Численные значения этих констант физикам хорошо известны. Даже школьники, изучая закон всемирного тяготения, знакомятся с константой (постоянной) тяготения. Студенты из курса общей физики узнают и о константах трех других видов физического взаимодействия.

Сравнительно недавно астрофизики и специалисты в области космологии осознали, что именно существующие значения констант физических взаимодействий необходимы, чтобы Вселенная была такой, какая она есть. При других физических константах Вселенная была бы совершенно иной. Например, время жизни Солнца могло быть всего 50 миллионов лет (этого слишком мало для возникновения и развития жизни на планетах). Или, скажем, если бы Вселенная состояла только из водорода или только из гелия - это тоже сделало бы ее совершенно безжизненной. Варианты Вселенной с иными массами протонов, нейтронов, электронов никак не подходят для жизни в том виде, в каком мы ее знаем. Расчеты убеждают: элементарные частицы нам нужны именно такие, какие они есть! И размерность пространства имеет фундаментальное значение для существования как планетных систем, так и отдельных атомов (с движущимися вокруг ядер электронами). Мы живем в трехмерном мире и не могли бы жить в мире с большим или меньшим числом измерений.

Получается, что во Вселенной все будто "подогнано" так, чтобы жизнь в ней могла появиться и развиваться! Мы, конечно, нарисовали очень упрощенную картину, потому что в возникновении и развитии жизни огромную роль играют не только физика, но и химия, и биология. Впрочем, при иной физике иными могли бы стать и химия, и биология...

Все эти рассуждения приводят к тому, что в философии называют антропным принципом. Это попытка рассматривать Вселенную в "человекомерном" измерении, то есть с точки зрения его существования. Сам по себе антропный принцип не может объяснить, почему Вселенная такова, какой мы ее наблюдаем. Но он в какой-то степени помогает исследователям формулировать новые задачи. Например, удивительную "подгонку" фундаментальных свойств нашей Вселенной можно рассматривать как обстоятельство, свидетельствующее об уникальности нашей Вселенной. А отсюда, похоже, один шаг до гипотезы о существовании совершенно других вселенных, миров, абсолютно не похожих на наш. И их число в принципе может быть неограниченно огромным.

Теперь попробуем приблизиться к проблеме существования других вселенных с позиций современной космологии, науки, изучающей Вселенную как целое (в отличие от космогонии, которая исследует происхождение планет, звезд, галактик).

Вспомните, открытие того, что Метагалактика расширяется, почти сразу же привело к гипотезе о Большом взрыве (см. "Наука и жизнь" № 2, 1998 г.). Считается, что он произошел примерно 15 миллиардов лет назад. Очень плотное и горячее вещество проходило одну за другой стадии "горячей Вселенной". Так, через 1 миллиард лет после Большого взрыва из образовавшихся к тому времени облаков водорода и гелия стали возникать "протогалактики" и в них - первые звезды. Гипотеза "горячей Вселенной" основывается на расчетах, позволяющих проследить историю ранней Вселенной начиная буквально с первой секунды.

Вот что об этом писал наш известный физик академик Я. Б. Зельдович: "Теория Большого взрыва в настоящий момент не имеет сколько-нибудь заметных недостатков. Я бы даже сказал, что она столь же надежно установлена и верна, сколь верно, что Земля вращается вокруг Солнца. Обе теории занимали центральное место в картине мироздания своего времени, и обе имели много противников, утверждавших, что новые идеи, заложенные в них, абсурдны и противоречат здравому смыслу. Но подобные выступления не в состоянии препятствовать успеху новых теорий".

Это было сказано в начале 80-х годов, когда уже делались первые попытки существенно дополнить гипотезу "горячей Вселенной" важной идеей о том, что происходило в первую секунду "творения", когда температура была выше 10 28 К. Сделать еще один шаг к "самому началу" удалось благодаря новейшим достижениям физики элементарных частиц. Именно на стыке физики и астрофизики стала развиваться гипотеза "раздувающейся Вселенной" (см. "Наука и жизнь" № 8, 1985 г.). По своей необычности гипотеза "раздувающейся Вселенной" может быть вполне отнесена к числу самых "сумасшедших". Однако из истории науки известно, что именно такие гипотезы и теории нередко становятся важными вехами на пути развития науки.

Суть гипотезы "раздувающейся Вселенной" в том, что в "самом начале" Вселенная чудовищно быстро расширялась. За какие-нибудь 10 -32 с размер рождающейся Вселенной вырос не в 10 раз, как это полагалось бы при "нормальном" расширении, а в 10 50 или даже в 10 1000000 раз. Расширение происходило ускоренно, а энергия в единице объема оставалась неизменной. Ученые доказывают, что начальные моменты расширения происходили в "вакууме". Слово это здесь поставлено в кавычках, поскольку вакуум был не обычным, а ложным, ибо трудно назвать обычным "вакуум" плотностью10 77 кг/м 3 ! Из такого ложного (или физического) вакуума, обладавшего удивительными свойствами (например, отрицательным давлением), могла образоваться не одна, а множество метагалактик (в том числе, конечно, и наша). И каждая из них - это мини-вселенная со своим набором физических констант, своей структурой и другими присущими ей особенностями (подробнее об этом см. "Земля и Вселенная" № 1, 1989 г.).

Но где же эти "родственники" нашей Метагалактики? По всей вероятности, они, как и наша Вселенная, образовались в результате "раздувания" домен ("домены" от французского domaine - область, сфера), на которые немедленно разбилась очень ранняя Вселенная. Поскольку каждая такая область раздулась до размеров, превышающих нынешний размер Метагалактики, то их границы удалены одна от другой на огромные расстояния. Возможно, ближайшая из мини-вселенных находится от нас на расстоянии порядка 10 35 световых лет. Напомним, что размер Метагалактики "всего" 10 10 световых лет! Получается, что не рядом с нами, а где-то очень-очень далеко друг от друга существуют иные, вероятно, совершенно диковинные, по нашим понятиям, миры...

Итак, возможно, что мир, в котором мы живем, значительно сложнее, чем предполагалось до сих пор. Вполне вероятно, что он состоит из бесчисленного множества вселенных во Вселенной. Об этой Большой Вселенной, сложной, удивительно многообразной, мы пока практически ничего не знаем. Но одно все-таки, кажется, знаем. Какими бы ни были далекие от нас другие мини-миры, каждый из них реален. Они не вымышлены, подобно некоторым модным ныне "параллельным" мирам, о которых сейчас нередко толкуют люди, далекие от науки.

Ну, а что же все-таки, в конце концов, получается? Звезды, планеты, галактики, метагалактики все вместе занимают лишь самое крошечное место в безграничных просторах чрезвычайно разреженного вещества... И больше во Вселенной ничего нет? Уж слишком просто... В это как-то даже трудно поверить.

И астрофизики уже давно что-то ищут во Вселенной. Наблюдения свидетельствуют о существовании "скрытой массы", какой-то невидимой "темной" материи. Ее нельзя увидеть даже в самый мощный телескоп, но она проявляет себя своим гравитационным воздействием на обычное вещество. Еще совсем недавно астрофизики предполагали, что в галактиках и в пространстве между ними такой скрытой материи примерно столько же, сколько и наблюдаемого вещества. Однако в последнее время многие исследователи пришли к еще более сенсационному выводу: "нормального" вещества в нашей Вселенной - не более пяти процентов, остальное - "невидимки".

Предполагают, что из них 70 процентов - это равномерно распределенные в пространстве квантомеханические, вакуумные структуры (именно они обусловливают расширение Метагалактики), а 25 процентов - различные экзотические объекты. Например, черные дыры малой массы, почти точечные; очень протяженные объекты - "струны"; доменные стенки, о которых уже мы упоминали. Но кроме таких объектов "скрытую" массу могут составлять целые классы гипотетических элементарных частиц, например "зеркальных частиц". Известный российский астрофизик академик РАН Н. С. Кардашев (когда-то очень давно мы с ним оба были активными членами астрономического кружка при Московском планетарии) предполагает, что из "зеркальных частиц" может состоять невидимый нами "зеркальный мир" со своими планетами и звездами. А вещества в "зеркальном мире" примерно в пять раз больше, чем в нашем. Оказывается, у ученых есть некоторые основания предполагать, что "зеркальный мир" как бы пронизывает наш. Вот только найти его пока не удается.

Идея почти сказочная, фантастическая. Но как знать, может быть, кто-нибудь из вас - нынешних любителей астрономии - станет исследователем в грядущем ХХI веке и сумеет раскрыть тайну "зеркальной Вселенной".

Публикации по теме в "Науке и жизни"

Шульга В. Космические линзы и поиск темного вещества во Вселенной. - 1994, № 2.

Ройзен И. Вселенная между мгновением и вечностью. - 1996, №№ 11, 12.

Сажин М., Шульга В. Загадки космических струн. - 1998, № 4.

Что находится за пределами Вселенной? Этот вопрос слишком сложный для человеческого понимания. Это связано с тем, что в самую первую очередь необходимо определить ее границы, а это далеко не просто.

Общепринятый ответ учитывает только наблюдаемую Вселенную. Согласно ему размеры определяются скоростью света, потому что возможно видеть только свет, который излучают или отражают объекты в космосе. Невозможно заглянуть дальше, чем наиболее отдаленный свет, который путешествует все время существования Вселенной.

Пространство продолжает увеличиваться, но все еще конечно. Его размер иногда упоминается как объем или сфера Хаббла. Человек во Вселенной, вероятно, никогда не сможет узнать, что за пределами ее границ. Так что для всех исследований это единственное пространство, с которым когда-либо придется взаимодействовать. По крайней мере, в ближайшее время.

Величие

Всем известно, что Вселенная велика. На сколько миллионов световых лет она простирается?

Астрономы тщательно изучают космическое излучение микроволнового фона - послесвечения Большого взрыва. Они ищут связь между тем, что происходит на одной стороне неба, и тем, что на другой. И пока нет никаких доказательств, что там есть что-то общее. Это означает, что на протяжении 13,8 миллиардов лет в любом направлении Вселенная не повторяется. Столько нужно времени свету, чтобы он достиг хотя бы видимого края этого пространства.

Нас все еще волнует вопрос, что находится за пределом Вселенной, которую можно наблюдать. Астрономы допускают, что космос бесконечен. «Вещество» в нем (энергия, галактики и т. д.) распределено точно таким же образом, как и в наблюдаемой Вселенной. Если это действительно так, тогда появляются разные аномалии того, что находится на краю.

За пределами объема Хаббла расположено не просто больше разных планет. Там можно найти вообще все, что только может существовать. Если продвинуться достаточно далеко, можно даже найти другую солнечную систему с Землей, идентичной во всех отношениях, за исключением того, что у вас была на завтрак каша вместо яичницы. Или завтрак отсутствовал вовсе. Или, допустим, вы встали пораньше и ограбили банк.

На самом деле космологи считают, что, если пройти достаточно далеко, то можно найти еще одну сферу Хаббла, которая совершенно идентична нашей. Большинство ученых считают, что известная нам Вселенная имеет границы. Что за их пределом, остается величайшей загадкой.

Космологический принцип

Это понятие означает, что независимо от места и направления наблюдателя, каждый видит одну и ту же картину Вселенной. Разумеется, это не относится к исследованиям меньшего масштаба. Такая однородность пространства вызвана равноправием всех его точек. Обнаружить это явление можно лишь в масштабах скопления галактик.

Что-то, сродни этому понятию было впервые предложено сэром Исааком Ньютоном в 1687 году. И впоследствии, в 20 веке, это же было подтверждено наблюдениями других ученых. Логично, если все возникло из одной точки Большого взрыва, а затем расширилось до Вселенной, то будет оставаться довольно однородным.

Расстояние, на котором можно наблюдать за космологическим принципом, чтобы найти это очевидное равномерное распределение материи, занимает примерно 300 миллионов световых лет от Земли.

Однако все изменилось в 1973 году. Тогда была обнаружена аномалия, нарушающая космологический принцип.

Великий аттрактор

Огромная концентрация массы обнаружилась на расстоянии 250 миллионов световых лет, близ созвездий Гидры и Центавра. Ее вес настолько велик, что его можно было бы сравнить с десятком тысяч масс Млечных Путей. Эта аномалия считается галактическим сверхскоплением.

Этот объект получил название Великий аттрактор. Его гравитационная сила настолько сильна, что воздействует на другие галактики и их скопления в течение нескольких сотен световых лет. Он долгое время оставался одной из самых больших тайн космоса.

В 1990 г. было обнаружено, что движение колоссальных скоплений галактик, называющихся Великим аттрактором, стремится к другой области космоса - за край Вселенной. Пока что за этим процессом можно наблюдать, хотя сама аномалия находится в «зоне избегания».

Темная энергия

Согласно Закону Хаббла, все галактики должны двигаться равномерно друг от друга, сохраняя космологический принцип. Однако в 2008 г. появилось новое открытие.

Wilkinson Microwave Anisotropy Probe (WMAP) обнаружил большую группу кластеров, которые двигались в одном направлении со скоростью до 600 миль в секунду. Все они держали путь к небольшой области неба между созвездиями Центавра и Паруса.

Этому нет никакой очевидной причины, и, поскольку это было необъяснимое явление, его назвали «темной энергией». Она вызвана чем-то вне пределов наблюдаемой Вселенной. В настоящее время есть только догадки о ее природе.

Если скопления галактик тянутся к колоссальной черной дыре, то их движение должно ускоряться. Темная энергия указывает на постоянную скорость космических тел в миллиарды световых лет.

Одна из возможных причин этого процесса - массивные структуры, что находятся за пределами Вселенной. Они оказывают огромное гравитационное влияние. Внутри наблюдаемой Вселенной нет гигантских структур с достаточной гравитационной тяжестью, чтобы вызвать это явление. Но это не значит, что они не могли существовать за пределами наблюдаемой области.

Это означало бы, что устройство Вселенной не является однородным. Что касается самих структур, они могут быть буквально любыми, от агрегатов материи и до энергии в масштабах, которые едва можно представить. Возможно даже, что это направляющие гравитационные силы из других Вселенных.

Бесконечные пузыри

Говорить о чем-то за пределами сферы Хаббла не совсем верно, так как это по-прежнему имеет идентичное устройство Метагалактики. «Неизвестность» имеет те же физические законы Вселенной и константы. Есть версия, что Большой взрыв вызвал появление пузырей в структуре пространства.

Сразу после него, до момента начала инфляции Вселенной, возникла своего рода «космическая пена», существующая как скопление «пузырей». Один из объектов этого вещества внезапно расширился, со временем став Вселенной, известной сегодня.

Но что получилось из других пузырей? Александр Кашлинский - глава команды НАСА, организации, которая обнаружила «темную энергию», - заявил: «Если отдалиться на достаточно большое расстояние, то можно увидеть структуру, которая находится вне пузыря, за пределами Вселенной. Эти структуры должны вызвать движение».

Таким образом, «темная энергия» воспринимается как первое свидетельство существования другой Вселенной, или даже «Мультивселенной».

Каждый пузырь - это область, которая перестала растягиваться вместе с остальной частью пространства. Она сформировала свою собственную Вселенную со своими особыми законами.

В этом сценарии пространство бесконечно, и каждый пузырь также не имеет границ. Даже если можно нарушить рубеж одного из них, пространство между ними все еще расширяется. Со временем будет невозможно добраться до следующего пузыря. Такое явление до сих пор остается одной из величайших тайн космоса.

Черная дыра

Теория, предложенная физиком Ли Смолином, предполагает, что каждый подобный космический объект в устройстве Метагалактики вызывает образование нового. Стоит только представить сколько черных дыр во Вселенной. Внутри каждой действуют физические законы, отличные от тех, что были у предшественника. Подобная гипотеза была впервые изложена в 1992 году в книге «Жизнь Космоса».

Звезды во всем мире, которые попадают в черные дыры, сжимаются до невероятно экстремальной плотности. В таких условиях это пространство взрывается и расширяется до собственной новой Вселенной, отличной от оригинала. Точка, где время останавливается внутри черной дыры, - это начало Большого взрыва новой Метагалактики.

Экстремальные условия внутри разрушенной черной дыры приводят к небольшим случайным изменениям основных физических сил и параметров в дочерней Вселенной. У каждого из них есть отличные от родительской характеристики и показатели.

Существование звезд является предпосылкой для формирования жизни. Это связано с тем, что углерод и другие сложные молекулы, обеспечивающие жизнь, создаются именно в них. Поэтому для формирования существ и Вселенной нужны одни и те же условия.

Критика космического естественного отбора как научной гипотезы заключается в отсутствии прямых доказательств на данном этапе. Но следует иметь в виду, что с точки зрения убеждений он не хуже, чем предлагаемые научные альтернативы. Нет подтверждений того, что находится за пределами Вселенной, будь это Мультивселенная, теория струн или циклическое пространство.

Множество параллельных Вселенных

Эта идея кажется чем-то, что мало относится к современной теоретической физике. Но мысль о существовании Мультиверса уже давно считается научной возможностью, хотя все еще вызывает активные дискуссии и деструктивные споры среди физиков. Этот вариант полностью разрушает представление о том, сколько Вселенных в космосе.

Важно иметь в виду, что Мультиверс не теория, а скорее следствие современного понимания теоретической физики. Это отличие имеет решающее значение. Никто не махнул рукой и не сказал: «Пусть будет Мультивселенная!». Эта идея была получена из текущих учений, таких как квантовая механика и теория струн.

Мультиверс и квантовая физика

Многим известен мысленный эксперимент «Кот Шредингера». Его суть заключается в том, что Эрвин Шредингер, австрийский физик-теоретик, указывал на несовершенство квантовой механики.

Ученый предлагает представить животное, которое поместили в закрытую коробку. Если открыть ее, можно узнать одно из двух состояний кота. Но пока коробка закрыта, животное либо живое, либо мертвое. Это доказывает то, что не существует состояния, сочетающего жизнь и смерть.

Все это кажется невозможным просто потому, что человеческое восприятие не может этого осознать.

Но это вполне реально в соответствии со странными правилами квантовой механики. Пространство всех возможностей в ней огромно. Математически квантовомеханическое состояние представляет собой сумму (или суперпозицию) всех возможных состояний. В случае «Кота Шредингера», эксперимент представляет собой суперпозицию «мертвых» и «живых» положений.

Но как это интерпретировать, чтобы оно имело какой-либо практический смысл? Популярный способ состоит в том, чтобы думать обо всех этих возможностях так, что единственным «объективно истинным» состоянием кота является - наблюдаемый. Однако можно также согласиться с тем, что эти возможности верны и все они существуют в разных Вселенных.

Теория струн

Это самая перспективная возможность объединить квантовую механику и гравитацию. Это трудно, потому что сила тяготения так же неописуема в небольших масштабах, как и атомы и субатомные частицы в рамках квантовой механики.

Но теория струн, в которой говорится, что все фундаментальные частицы состоят из мономерных элементов, описывает сразу все известные силы природы. К ним относят гравитацию, электромагнетизм и ядерные силы.

Однако для математической теории струн требуется не менее десяти физических измерений. Мы можем наблюдать только четыре измерения: высоту, ширину, глубину и время. Поэтому дополнительные измерения от нас скрыты.

Чтобы иметь возможность использовать теорию для объяснения физических явлений, эти дополнительные исследования «уплотнены» и слишком малы в небольших масштабах.

Проблема или особенность теории струн заключается в том, что существует много способов произвести компактификацию. Каждая из них приводит к созданию Вселенной с различными физическими законами, такими как отличные массы электронов и константы силы тяжести. Однако есть также серьезные возражения против методологии компактификации. Поэтому проблема не совсем решена.

Но возникает очевидный вопрос: в какой из этих возможностей мы живем? Теория струн не обеспечивает механизм определения этого. Она делает ее бесполезной, поскольку не представляется возможным ее досконально протестировать. Но исследование края Вселенной превратило эту ошибку в особенность.

Последствия Большого взрыва

Во время самого раннего устройства Вселенной был период ускоренного расширения, называемый инфляцией. Первоначально она объясняла, почему сфера Хаббла почти однородна по температуре. Однако инфляция также предсказала спектр флуктуаций температуры вокруг этого равновесия, который позднее был подтвержден несколькими космическими аппаратами.

Хотя точные детали теории все еще горячо обсуждаются, инфляция широко принимается физиками. Однако следствие этой теории состоит в том, что должны быть другие объекты во Вселенной, которые все еще ускоряются. Из-за квантовых флуктуаций пространства-времени некоторые ее части никогда не достигнут конечного состояния. Это означает, что пространство будет вечно расширяться.

Этот механизм генерирует бесконечное количество Вселенных. Комбинируя этот сценарий с теорией струн, есть вероятность, что каждая из них обладает другой компактификацией дополнительных размеров и, следовательно, имеет разные физические законы Вселенной.

Согласно учению Мультиверс, предсказанному теорией струн и инфляцией, все Вселенные живут в одном и том же физическом пространстве и могут пересекаться. Они неизбежно должны сталкиваться, оставляя следы в космическом небе. Их характер имеет широкий спектр - от холодных или горячих точек на космическом микроволновом фоне до аномальных пустот в распределение галактик.

Поскольку столкновение с другими Вселенными должно происходить в определенном направлении, ожидается, что любые вмешательства нарушают однородность.

Некоторые ученые ищут их через аномалии в космическом микроволновом фоне, послесвечении Большого Взрыва. Другие в гравитационных волнах, которые рябят в пространстве-времени по мере прохождения массивных объектов. Эти волны могут непосредственно доказывать существование инфляции, которая в конечном итоге усиливает поддержку теории Мультивселенной.