Педагогика

Презентация к уроку: "Стереометрия". Презентация на тему: "Предмет стереометрия. Аксиомы стереометрии " Презентация на тему предмет стереометрии аксиомы


  • Что такое стереометрия?
  • Возникновение и развитие стереометрии
  • Основные фигуры в пространстве
  • Обозначение точек и примеры их моделей
  • Обозначение прямых
  • Примеры моделей прямых
  • Обозначение плоскостей и примеры их моделей
  • Что еще изучает стереометрия?
  • Окружающие нас предметы и геометрические тела
  • Изображение геометрических тел на чертежах
  • Практическое (прикладное) значение стереометрии
  • Аксиомы стереометрии
  • Следствия из аксиом стереометрии
  • Закрепление
  • Используемая литература

Что такое стереометрия?

Стереометрия – это раздел геометрии, в котором изучаются свойства фигур в пространстве.


Возникновение и развитие стереометрии.

  • Развитие стереометрии началось значительно позднее планиметрии.
  • Стереометрия развивалась из наблюдений и решений вопросов, которые возникали в процессе практической деятельности человека.

  • Уже первобытный человек, занявшись земледелием, делал попытки оценивать, хотя бы в грубых чертах, размер собранного им урожая по массам хлеба, сложенного в кучи, копны или скирды.
  • Строитель даже самых древних примитивных построек должен был как-то учитывать материал, которым он располагал, и и уметь подсчитать, сколько материала потребуется для возведения той или иной постройки.

  • Каменотесное дело у древних египтян и халдеев требовало знакомства с метрическими свойствами хотя бы простейших геометрических тел.
  • Потребность земледелия, мореплавания, ориентировки во времени толкали людей к астрономическим наблюдениям, а последние – к изучению свойств сферы и её частей, а следовательно и законов взаимного расположения плоскостей и линий в пространстве.

Основные фигуры в пространстве.

Плоскость –геометрическая фигура, простирающаяся неограниченно во все стороны


Обозначение точек и примеры их моделей.

Точки обозначаются прописными латинскими буквами А, В, С, …

Примерами моделей точек являются:

атомы и молекулы

планеты в масштабах вселенной


Обозначение прямых.

  • Прямые обозначаются:
  • строчными латинскими буквами a, b, c, d, e, k, …
  • двумя заглавными латинскими буквами AB, CD …

Примеры моделей прямых.

Примерами моделей прямых могут служить:

инверсионные следы самолетов


Обозначение плоскостей и примеры их моделей.

Плоскости обозначаются греческими буквами α, β, γ,…

Примерами моделей плоскостей могут служить:

поверхность воды

поверхность стола


Что еще изучает стереометрия?

На ряду с точкой, прямой и плоскостью стереометрия изучает геометрические тела и их поверхности.


Окружающие нас предметы и геометрические тела.

Окружающие нас предметы дают представления о геометрических телах.

А изучая свойства геометрических фигур – воображаемых объектов, мы получаем сведения о геометрических свойствах реальных предметов и можем использовать эти свойства в практической деятельности.

кристаллы- многогранники

жестяная банка - цилиндр

упаковка для конфет - конус


Изображения геометрических тел на чертежах.

  • Изображением пространственной фигуры служит её проекция на ту или иную плоскость.
  • Невидимые части фигуры изображаются штриховыми линиями.

Практическое (прикладное) значение стереометрии.

  • Геометрические тела являются вымышленными объектами
  • Изучая свойства геометрических фигур, мы получаем представления о геометрических свойствах реальных предметов (их форме, взаимном расположении и т.д.)
  • Стереометрия широко используется в строительном деле, архитектуре, машиностроении и других областях науки и техники

Аксиомы стереометрии.

  • Аксиома – это утверждение о свойствах геометрических фигур, принимается в качестве исходных положений, на основе которых доказываются далее теоремы и вообще строится вся геометрия.

Аксиомы стереометрии.

А1 . Через любые три точки, не лежащие на одной прямой, проходит плоскость и притом только одна.


Аксиомы стереометрии.

А2 . Если две точки прямой лежат в плоскости, то и все точки этой прямой лежат в этой плоскости.

В таком случае говорят, что прямая лежит в плоскости или плоскость проходит через прямую.


Аксиомы стереометрии.

А3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

Говорят, что плоскости пересекаются по прямой


Следствия из аксиом.

Теорема 1: Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.

Теорема 2: Через две пересекающиеся прямые проходит плоскость, и при том только одна.


Закрепление.

1.Назовите плоскости, в которых лежат прямые:


Закрепление.

2. Назовите точку пересечения прямой СE с плоскостью ADB.

3. Назовите прямые, по которым пересекаются плоскости:


Используемая литература

  • Геометрия. 10-11 классы: учеб. Для общеобразоват. учреждений: базовый и профил. уровни/Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – 21-е изд. – М.: Просвещение, 2012.- 255 с.: ил.
  • Геометрия: методическое пособие для высших педагогических заведений и преподавателей средней школы: ч. 2 Стереометрия/ под ред. Проф. И.К. Андронова.

Как и планиметрия, стереометрия держится на некоторых аксиомах, на основе которых в дальнейшем будут доказываться теоремы и решаться задачи. Аксиомы, как известно, не требуют доказательств. Если пропустить данную тему, то дальнейшее изучение стереометрии не будет иметь никакого смысла. Решения станут непонятны, ученик отстанет от своих сверстников, успеваемость во многом понизиться. Поэтому стоит хорошо изучить данную презентацию. Сделать это можно и в классе вместе с учителем, и в домашней обстановке. Упустив эту тему, дальнейшие решения в последующих презентациях не будут понятны, ведь ссылаются на аксиомы в данном уроке.

Презентация состоит из 14 слайдов, на первом из которых напоминается определение понятия аксиомы. Далее уточняется, что же является аксиомой в стереометрии. Первая аксиома в данном разделе говорит о том, что через три точки можно провести лишь одну плоскость. Это очень важное утверждение. Школьники должны хорошо себе это представлять и понимать, что через одну или две точки можно провести бесконечное множество плоскостей. Изображение плоскости, проведенной через три точки, приводится на этом же слайде.


Вторая аксиома гласит о том, что если некоторые точки произвольной прямой (минимум 2) лежат на плоскости, то все бесконечное количество точек также лежат на этой плоскости. Убедиться в этом можно также просто. Однако доказать нельзя. На то утверждение и является аксиомой. Если ученики не понимают или не представляют ту или иную аксиому, можно предложить им доказать обратное практическим образом. То есть привести хоть один пример, который будет опровергать утверждение. Благодаря этому они смогут развить математическое и пространственное мышление.


Следующая аксиома, А3, говорит о пересечении двух плоскостей об общей прямой, которой они обладают. Плоскости изображены через параллелограммы. Есть также иные способы их обозначения, однако данный является наиболее распространенным во многих учебниках, в том числе и школьных.


На следующем слайде выводятся изображения трех аксиом. Все эти чертежи желательно перечертить в тетрадях, чтобы лучше запомнить и понять. Таким образом, можно лучше запомнить аксиомы. Итак, были рассмотрены три основных утверждения, к которым школьники неоднократно будут возвращаться. Желательно знать их формулировки и уметь правильно ими воспользоваться, также воспроизвести их в случае необходимости.


Далее презентация предлагает рассмотреть задачу, в которой исследуется такое тело, как тетраэдр. С этой фигурой школьники ранее были знакомы, и вероятнее всего имели дело. Для того, чтобы учитель понял, могут ли справиться ученики с пространственным мышлением, предлагается определить некоторые плоскости, точки пересечения и т.д. на фоне этой фигуры. Если у некоторых возникают трудности, то стоит им задать на дом похожие примеры, чтобы они смогли лучше понять суть.


После этой задачи приводится еще одна. Для ее решения, необходимо вспомнить все изученные аксиомы и научиться ими воспользоваться. В случае, если останется время от урока, стоит рассмотреть как можно больше практических задач с классом.


С помощью презентации «Аксиомы стереометрии» молодой учитель может провести интересный урок, привлечь внимание учеников. Благодаря оптическому восприятию, школьники смогут лучше усвоить и понять материал. При написании плана конспекта, которым занимаются в обязательном порядке молодые учителя, презентация также пригодится. Она поможет правильно структурировать урок и не пропустить ни одну аксиому, ни одно важное объяснение и замечание.

Примеры, которые приводятся в презентации, также станут полезны при проведении урока.

Слайд 1

Методическая разработка Савченко Е.М. МОУ гимназия №1, г. Полярные Зори, Мурманской обл.
Предмет стереометрии
Аксиомы стереометрии
Геометрия 10 класс

Слайд 2

Планиметрия
Стереометрия
Изучает свойства геометрических фигур на плоскости
Изучает свойства фигур в пространстве
В переводе с греческого слово «геометрия» означает «землемерие» «гео» – по-гречески земля, «метрео» – мерить
Слово «стереометрия» происходит от греческих слов «стереос» объемный, пространственный, «метрео» – мерить

Слайд 3

Планиметрия
Стереометрия
Наряду с этими фигурами мы будем рассматривать геометрические тела и их поверхности. Например, многогранники. Куб, параллелепипед, призма, пирамида. Тела вращения. Шар, сфера, цилиндр, конус.
Основные фигуры: точка, прямая
Основные фигуры: точка, прямая, плоскость
Другие фигуры: отрезок, луч, треугольник, квадрат, ромб, параллелограмм, трапеция, прямоугольник, выпуклые и невыпуклые n-угольники, круг, окружность, дуга и др.

Слайд 4

Для обозначение точек используем прописные латинские буквы
Для обозначение прямых используем строчные латинские буквы
Или обозначаем прямую двумя прописными латинскими буквами.

Слайд 5

Плоскости будем обозначать греческими буквами.
На рисунках плоскости обозначаются в виде параллелограммов. Плоскость как геометрическую фигуру следует представлять себе простирающейся неограниченно во все стороны.

Слайд 6

Слайд 7

При изучении пространственных фигур, в частности геометрических тел пользуются их плоскими изображениями на чертеже. Изображением пространственной фигуры служит ее проекция на ту или иную плоскость. Одна и та же фигура допускает различные изображения.
Различные изображения конуса

Слайд 8

Стереометрия широко используется в строительном деле, архитектуре, машиностроении, геодезии, во многих других областях науки и техники.
При проектировании этой машины важно было получить такую форму, чтобы при движении сопротивление воздуха было минимально.

Слайд 9

Оперный театр в Сиднее
Датский архитектор Йорн Утцон был вдохновлён видом парусов.

Слайд 10

Эйфелева башня Париж, Марсово поле
Инженер Гюстав Эйфель нашел необычную форму для своего проекта. Эйфелева башня весьма устройчива: сильный ветер отклоняет ее вершину всего лишь на 10-12 см. В жару от неравномерного нагревания солнечными лучами она может отклониться на 18 см.

Слайд 11

18000 железных деталей скрепляются 2500000 заклёпками

Слайд 12

Оригинальная идея для строительства башни была найдена архитекторами Л. Баталовым и Д. Бурдиным при участии конструктора Н. Никитина. Внутри цилиндрических бетонных блоков натянуты металлические тросы. Такая конструкция необычайно устойчива.
Теоретическое отклонение вершины башни при максимальных расчетных скоростях ветра около 12 метров.

Слайд 13

Основные свойства точек, прямых и плоскостей выражены в аксиомах. Из множества аксиом мы сформулируем только три.
А1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Иллюстрация к аксиоме А1: стеклянная пластинка плотно ляжет на три точки А, В и С, не лежащие на одной прямой.
A
B
C

Слайд 14

Иллюстрации к аксиоме А1 из жизни.
Табурет с тремя ножками всегда идеально встанет на пол и не будет качаться. У табурета с четырьмя ножками бывают проблемы с устойчивостью, если ножки стула не одинаковые по длине. Табурет качается, т. е. опирается на три ножки, а четвертая ножка (четвертая «точка») не лежит в плоскости пола, а висит в воздухе.
Для видеокамеры, фотосъемки и для других приборов часто используют штатив – треногу. Три ножки штатива устойчиво расположатся на любом полу в помещениях, на асфальте или прямо на газоне на улице, на песке на пляже или в траве в лесу. Три ножки штатива всегда найдут плоскость.

Слайд 15

О
А
В
Построение прямых углов на местности с помощью простейшего прибора, который называется экер.
Треножник с экером.

Слайд 16

a
А2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости.
A
B

Слайд 17

Свойство, выраженное в аксиоме А2, используется для проверки «ровности» чертежной линейки. Линейку прикладывают краем к плоской поверхности стола. Если край линейки ровный, то он всеми своими точками прилегает к поверхности стола. Если край неровный, то в каких-то местах между ним и поверхностью стола образуется просвет.

Слайд 18

Из аксиомы А2 следует, что если прямая не лежит в данной плоскости, то она имеет с ней не более одной общей точки. Если прямая и плоскость имеют только одну общую точку, то говорят, что они пересекаются.

Слайд 19

a
А3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
В этом случае говорят, что плоскости пересекаются по прямой.

Слайд 20

Наглядной иллюстрацией аксиомы А3 является пересечение двух смежных стен, стены и потолка классной комнаты.

Слайд 21

А1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

Слайд 22


Теорема
Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.
М
a

Слайд 23

Некоторые следствия из аксиом.
Теорема
Через две пересекающиеся прямые проходит плоскость, и притом только одна
М
a
b
N

Слайд 24

Тренировочные упражнения
Назовите плоскости, в которых лежат прямые РЕ МК DB AB EC
P
E
A
B
C
D
M
K

Слайд 25

Тренировочные упражнения
Назовите точки пересечения прямой DK с плоскостью АВС, прямой СЕ с плоскостью АDB.
P
E
A
B
C
D


- Что такое геометрия?

Геометрия – раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

«Геометрия» - (от греч.) – «землемерие».

  • Что такое планиметрия?

Планиметрия – раздел геометрии, в котором изучаются свойства фигур на плоскости.

- Основные понятия планиметрии?



Основные фигуры в пространстве:

точка прямая плоскость

Обозначение: А; В; С; …; М;…

Обозначение: a, b, с, d…, m, n,…(или двумя заглавными латинскими)

Обозначение: α, β, γ…



Назовите какие геометрические тела вам напоминают предметы, изображенные на этих рисунках:

Назовите предметы из окружающей вас обстановки (нашей классной комнаты) напоминающие вам геометрические тела.


1. Изобразите в тетради куб (видимые линии – сплошной линией, невидимые – пунктиром).

2. Обозначьте вершины куба заглавными буквами АВСДА 1 В 1 С 1 Д 1

3. Выделите цветным карандашом:

  • вершины А, С, В 1 , Д 1
  • отрезки АВ, СД, В 1 С, Д 1 С
  • диагонали квадрата АА 1 В 1 В

- Что такое аксиома?

Аксиома – это утверждение о свойствах геометрических фигур, принимается в качестве исходных положений, на основе которых доказываются далее теоремы и вообще строится вся геометрия.

Аксиомы планиметрии:

- через любые две точки можно провести прямую и притом только одну.

  • из трех точек прямой одна, и только одна, лежит между двумя другими.
  • имеются по крайней мере три точки, не лежащие на одной прямой…

Аксиомы стереометрии.

А1 . Через любые три точки, не лежащие на одной прямой, проходит плоскость и притом только одна.



Аксиомы стереометрии.

А2. Если две точки прямой лежат в плоскости, то и все точки этой прямой лежат в этой плоскости.

Говорят: прямая лежит в плоскости или плоскость проходит через прямую.


Сколько общих точек имеют прямая и плоскость?

Прямая лежит в плоскости

Прямая пересекает плоскость


Аксиомы стереометрии.

А3. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей. Говорят : плоскости пересекаются по прямой.


Решить задачи: №1(а,б); 2(а)

Назовите по рисунку:

В 1

С 1

А 1

Д 1

а) плоскости, в которых лежат прямые РЕ, МК, ДВ, АВ, ЕС; б) точки пересечения прямой ДК с плоскостью АВС, прямой СЕ с плоскостью АДВ.

а) точки, лежащие в плоскостях ДСС 1 и ВQС


Подведем итоги урока:

1) Как называется раздел геометрии, который мы будем изучать в 10-11 классах?

2) Что такое стереометрия?

3) Сформулируйте с помощью рисунка аксиомы стереометрии, которые вы изучили сегодня на уроке.


  • Повторить аксиомы планиметрии
  • Выучить аксиомы А1-А3
  • Прочитать пункт 1,2 (стр. 3 – 6)
  • Решить задачи: 1(в,г); 2(б,д).
  • Дополнительно: № 3; 4 (по желанию)

1-й урок: Что изучает стереометрия? Стереометрия – это раздел геометрии, в котором изучаются свойства фигур в пространстве. Слово «стереометрия» происходит от греческих слов «стереос» - объемный, пространственный и «метрео» - измерять. Многие геометрические термины переведены с древнегреческого языка, т.к. геометрия зародилась в Древней Греции и развивалась в философских школах.




2-й урок: Основные фигуры стереометрии. Существуют различные способы изображения плоскости: плоскость изображают параллелограммом; плоскость обозначается фигурой, ограниченной двумя параллельными прямыми и двумя произвольными кривыми; плоскость передается фигурой произвольной формы.


3-й урок: Пространственные фигуры. Урок посвящается подготовке к введению аксиом стереометрии. Учащимся предлагаются следующие задачи: 1. Изобразите прямую а, лежащую на ней точку А и не лежащую на ней точку В. 2. Изобразите плоскость и две пересекающиеся прямые а и b, лежащие на ней. 3. Изобразите плоскость, лежащие на ней точки А и В, а также точки C и D, расположенные на разные стороны от плоскости. 4. Изобразите плоскость и пересекающую ее прямую а. 5. Изобразите плоскости, пересекающиеся под прямым углом.




5-й урок: Признаки параллельности плоскостей. При изучении аксиом стереометрии вспоминаем первые аксиомы планиметрии и формулируем их пространственн ые аналогии. В результате получаем следующую таблицу: Акс иом а ЧертежФормулировка П1П1 Какова бы ни была прямая в пространстве, существуют точки пространства, принадлежащие этой прямой, и точки, не принадлежащие ей. П2П2 Через любые две точки пространства можно провести прямую, и притом только одну.


6-й урок: Параллельное проектирование. Рассмотрим следствия из аксиом: ЧертежФормулировка Сл.1Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости. Через три точки, не лежащие на одной прямой, можно провести плоскость, и притом только одну.


Изображение пространственных фигур на плоскости На тему отводятся семь занятий: 1. П Параллельное проектирование и его основные свойства; 2. П Параллельное проектирование плоских фигур; 3. И Изображение пространственных фигур в параллельной проекции; 4. С Сечение многогранников; 5. З Золотое сечение; 6. Ц Центральное проектирование и его свойства; 7. И Изображение пространственных фигур в центральной проекции.


Занятие 1: Параллельное проектирование и его основные свойства. Основные свойства параллельного проектирования: 1. параллельной проекцией прямой является прямая или точка; 2. параллельной проекцией отрезка является отрезок или точка; 3. отношение длин отрезков, лежащих на одной прямой, сохраняется (в частности, середина отрезка при параллельном проектировании переходит в середину соответствующего отрезка); 4. параллельной проекцией двух параллельных прямых являются параллельные прямые, или одна прямая, или две точки; 5. отношение длин отрезков, лежащих на параллельных прямых, при параллельном проектировании сохраняется; 6. если фигура лежит в плоскости, параллельной плоскости проектирования, то ее параллельной проекцией на эту плоскость будет фигура, равная исходной.


Занятие 2: Параллельные проекции плоских фигур. Рассматривается вопрос об изображении плоских фигур при параллельном проектировании. Учащиеся должны представить себе, какие фигуры являются параллельными проекциями многоугольников и окружности. Выяснить какие свойства многоугольников сохраняются при параллельном проектирования. Узнать как строятся параллельные проекци основных плоских фигур.








Золотое сечение в архитектуре Известный русский архитекторы М. Казаков и В. Баженов широко использовали в своем творчестве золотое сечение. Например, золотое сечение можно обнаружить в архитектуре здания сената в Кремле. По проекту М. Казакова в Москве была построена Первой клинической Еще один архитектурный шедевр Москвы – дом Пашкова – является одним из наиболее совершенных произведений архитектуры В. Баженова.






Многогранники. В этот курс включены следующие занятия: 1. Правильные многогранники. Правильные многогранники. 2. Полуправильные многогранники. Полуправильные многогранники. 3. Звездчатые многогранники. Звездчатые многогранники. 4. Теорема Эйлера. Теорема Эйлера.






















Занятие 4: Теорема Эйлера. Одно из наиболее интересных свойств выпуклых многогранников описано теоремой Эйлера. Название многогранник а Число верш ин(В) Числ о ребе р (Р) Числ о гран ей (Г) Треугольная пирамида 464 Четырехуголь ная призма 8126 Пятиугольная бипирамида правильный додекаэдр n-угольная пирамида n+12n2n n-угольная призма 2n2n3n3nn+2 Сначала с учащимися рассматриваются известные им многогранники и заполняется таблица. Затем выводится и сама теорема: В-Р+Г=2


Углы между прямыми и плоскостями в пространстве. При изучении данной темы желательно отметить, что проблема измерения углов восходит к глубокой древности. Следует как можно шире осветить историю создания измерительных приборов и методы измерения. Для это предлагается провести следующие занятия: 1. Объем фигур в пространстве. Объем цилиндра; Объем фигур в пространстве. Объем цилиндра; 2. Принцип Кавальери;Принцип Кавальери; 3. Объем конуса; Объем конуса; 4. Объем шара. Объем шара.


Занятие 1: Объем фигур в пространстве. Объем цилиндра. На этом занятии рассматриваются проблемы измерения объемов пространственных фигур. Перечисляются основные свойства объема: oоoобъем фигуры в пространстве является неотрицательным числом; oоoобъем куба с ребром 1 равен 1; oрoравные фигуры имеют равные объемы; oеoесли фигура Ф составлена из фигур Ф 1 и Ф 2, то объем фигуры Ф равен сумме объемов фигур Ф 1 и Ф 2.