Финансы, деньги

Решение уравнений четвертой степени по схеме горнера. Тема урока "Теорема Безу. Схема Горнера и ее применение"

И т.д. носит общеобразовательный характер и имеет большое значение для изучения ВСЕГО курса высшей математики. Сегодня мы повторим «школьные» уравнения, но не просто «школьные» – а те из них, которые повсеместно встречаются в различных задачах вышмата. Как обычно, повествование пойдёт в прикладном ключе, т.е. я не буду заострять внимание на определениях, классификациях, а поделюсь с вами именно личным опытом решения. Информация предназначена, прежде всего, для начинающих, но и более подготовленные читатели тоже найдут для себя немало интересных моментов. И, конечно же, будет новый материал, выходящий за рамки средней школы.

Итак, уравнение…. Многие с содроганием вспоминают это слово. Чего только стОят «навороченные» уравнения с корнями... …забудьте о них! Потому что дальше вам будут встречаться самые безобидные «представители» этого вида. Или занудные тригонометрические уравнения с десятками методов решения. Если честно, я и сам их не особо любил…. Без паники! – далее вас ожидают преимущественно «одуванчики» с очевидным решением в 1-2 шага. Хотя и «репейник», безусловно, цепляется – здесь нужно быть объективным.

Как ни странно, в высшей математике гораздо чаще приходится иметь дело с совсем примитивными уравнениями наподобие линейного уравнения .

Что значит решить это уравнение? Это значит – найти ТАКОЕ значение «икс» (корень), которое обращает его в верное равенство. Перебросим «тройку» направо со сменой знака:

и сбросим «двойку» в правую часть (или, то же самое – умножим обе части на ) :

Для проверки подставим завоёванный трофей в исходное уравнение :

Получено верное равенство, значит, найденное значение действительно является корнем данного уравнения. Или, как ещё говорят, удовлетворяет данному уравнению.

Обратите внимание, что корень можно записать и в виде десятичной дроби:
И постарайтесь не придерживаться этого скверного стиля! Причину я повторял неоднократно, в частности, на первом же уроке по высшей алгебре .

Кстати, уравнение можно решить и «по-арабски»:

И что самое интересное – данная запись полностью легальна! Но если Вы не преподаватель, то так лучше не делать, ибо оригинальность здесь наказуема =)

А теперь немного о

графическом методе решения

Уравнение имеет вид и его корень – есть «иксовая» координата точки пересечения графика линейной функции с графиком линейной функции (осью абсцисс) :

Казалось бы, пример настолько элементарен, что разбирать тут больше нечего, однако из него можно «выжать» ещё один неожиданный нюанс: представим то же самое уравнение в виде и построим графики функций :

При этом, пожалуйста, не путайте два понятия : уравнение – это уравнение, а функция – это функция! Функции лишь помогают найти корни уравнения. Коих может быть два, три, четыре и даже бесконечно много. Ближайшим примером в этом смысле является всем известно квадратное уравнение , алгоритм решения которого удостоился отдельного пункта «горячих» школьных формул . И это не случайно! Если вы умеете решать квадратное уравнение и знаете теорему Пифагора , то, можно сказать, «пол высшей математики уже в кармане» =) Преувеличено, конечно, но и не так далеко от истины!

А поэтому не поленимся и прорешаем какое-нибудь квадратное уравнение по стандартному алгоритму :

, значит, уравнение имеет два различных действительных корня:

Легко убедиться, что оба найденных значения действительно удовлетворяют данному уравнению:

Что делать, если вы вдруг позабыли алгоритм решения, и под рукой нет средств/рук помощи? Такая ситуация может возникнуть, например, на зачёте или экзамене. Используем графический метод! И тут есть два пути: можно поточечно построить параболу , выяснив тем самым, где она пересекает ось (если пересекает вообще) . Но лучше поступить хитрее: представим уравнение в виде , начертим графики более простых функций – и «иксовые» координаты их точек пересечения, как на ладони!


Если окажется, что прямая касается параболы, то уравнение имеет два совпавших (кратных) корня. Если окажется, что прямая не пересекает параболу, значит, действительных корней нет.

Для этого, конечно, нужно уметь строить графики элементарных функций , но с другой стороны эти умения по силам даже школьнику.

И вновь – уравнение – это уравнение, а функции , – это функции, которые лишь помогли решить уравнение!

И тут, кстати, уместно будет вспомнить ещё одну вещь: если все коэффициенты уравнения умножить на ненулевое число, то его корни не изменятся .

Так, например, уравнение имеет те же самые корни. В качестве простейшего «доказательства» вынесу константу за скобки:
и безболезненно её уберу (разделю обе части на «минус два») :

НО! Если мы рассматриваем функцию , то здесь уже избавляться от константы нельзя! Допустимо разве что вынесение множителя за скобки: .

Многие недооценивают графический метод решения, считая его чем-то «несолидным», а некоторые и вовсе забывают о такой возможности. И это в корне ошибочно, поскольку построение графиков иногда просто спасает ситуацию!

Ещё один пример: предположим, вы не помните корни простейшего тригонометрического уравнения: . Общая формула есть в школьных учебниках, во всех справочниках по элементарной математике, но они вам недоступны. Однако решить уравнение критически важно (иначе «двойка»). Выход есть! – строим графики функций :


после чего спокойненько записываем «иксовые» координаты их точек пересечения:

Корней бесконечно много и в алгебре принята их свёрнутая запись:
, где ( – множество целых чисел ) .

И, не «отходя от кассы», пару слов о графическом методе решения неравенств с одной переменной. Принцип такой же. Так, например, решением неравенства является любое «икс», т.к. синусоида почти полностью лежит под прямой . Решением неравенства является множество промежутков, на которых куски синусоиды лежат строго выше прямой (оси абсцисс) :

или, если короче:

А вот множество решений неравенства – пусто , поскольку никакая точка синусоиды не лежит выше прямой .

Что-нибудь не понятно? Срочно штудировать уроки о множествах и графиках функций !

Разминаемся:

Задание 1

Решить графически следующие тригонометрические уравнения:

Ответы в конце урока

Как видите, для изучения точных наук совсем не обязательно зубрить формулы и справочники! И более того, это принципиально порочный подход.

Как я уже обнадёжил вас в самом начале урока, сложные тригонометрические уравнения в стандартном курсе высшей математики приходится решать крайне редко. Вся сложность, как правило, заканчивается уравнениями вроде , решением которого являются две группы корней, происходящие от простейших уравнений и . С решением последнего сильно не парьтесь – посмотрите в книжке или найдите в Интернете =)

Графический метод решения может выручить и в менее тривиальных случаях. Рассмотрим, например, следующее «разношёрстное» уравнение:

Перспективы его решения выглядят... вообще никак не выглядят, однако стОит только представить уравнение в виде , построить графики функций и всё окажется невероятно просто. Чертёж есть в середине статьи о бесконечно малых функциях (откроется на соседней вкладке) .

Тем же графическим методом можно выяснить, что уравнение имеет уже два корня, причём один из них равен нулю, а другой, судя по всему, иррационален и принадлежит отрезку . Данный корень можно вычислить приближённо, например, методом касательных . Кстати, в некоторых задачах, бывает, требуется не отыскать корни, а выяснить, есть ли они вообще . И здесь тоже может помочь чертёж – если графики не пересекаются, то корней нет.

Рациональные корни многочленов с целыми коэффициентами.
Схема Горнера

А теперь я предлагаю вам обернуть свой взор в средние века и прочувствовать неповторимую атмосферу классической алгебры. Для лучшего понимания материала рекомендую хоть чуть-чуть ознакомиться с комплексными числами .

Они самые. Многочлены.

Объектом нашего интереса будут наиболее распространённые многочлены вида с целыми коэффициентами . Натуральное число называют степенью многочлена , число – коэффициентом при старшей степени (или просто старшим коэффициентом) , а коэффициент – свободным членом .

Данный многочлен я буду свёрнуто обозначать через .

Корнями многочлена называют корни уравнения

Обожаю железную логику =)

За примерами сходим в самое начало статьи:

С нахождением корней многочленов 1-й и 2-й степеней нет никаких проблем, но по мере увеличения эта задача становится всё труднее и труднее. Хотя с другой стороны – всё интереснее! И как раз этому будет посвящена вторая часть урока.

Сначала буквально пол экрана теории:

1) Согласно следствию основной теоремы алгебры , многочлен степени имеет ровно комплексных корней. Некоторые корни (или даже все) могут быть в частности действительными . При этом среди действительных корней могут встретиться одинаковые (кратные) корни (минимум два, максимум штук) .

Если некоторое комплексное число является корнем многочлена, то и сопряжённое ему число – тоже обязательно корень данного многочлена (сопряжённые комплексные корни имеют вид ) .

Простейший пример – квадратное уравнение, которое впервые встретилось в8 (вроде) классе, и которое мы окончательно «добили» в теме комплексных чисел . Напоминаю: квадратное уравнение имеет либо два различных действительных корня, либо кратные корни, либо сопряжённые комплексные корни.

2) Из теоремы Безу следует, что если число является корнем уравнения , то соответствующий многочлен можно разложить на множители:
, где – многочлен степени .

И опять же, наш старый пример: поскольку – корень уравнения , то . После чего нетрудно получить хорошо знакомое «школьное» разложение .

Следствие теоремы Безу имеет большую практическую ценность: если мы знаем корень уравнения 3-й степени , то можем представить его в виде и из квадратного уравнения легко узнать остальные корни. Если нам известен корень уравнения 4-й степени , то есть возможность разложить левую часть в произведение и т.д.

И вопроса здесь два:

Вопрос первый . Как найти этот самый корень ? Прежде всего, давайте определимся с его природой: во многих задачах высшей математики требуется отыскать рациональные , в частности целые корни многочленов, и в этой связи далее нас будут интересовать преимущественно они…. …они такие хорошие, такие пушистые, что их прямо так и хочется найти! =)

Первое, что напрашивается – метод подбора. Рассмотрим, например, уравнение . Загвоздка здесь в свободном члене – вот если бы он равнялся нулю, то всё было бы в ажуре – выносим «икс» за скобки и корни сами «вываливаются» на поверхность:

Но у нас свободный член равен «тройке», и поэтому мы начинаем подставлять в уравнение различные числа, претендующие на звание «корень». Прежде всего, напрашивается подстановка единичных значений. Подставим :

Получено неверное равенство, таким образом, единица «не подошла». Ну да ладно, подставляем :

Получено верное равенство! То есть, значение является корнем данного уравнения.

Для отыскания корней многочлена 3-й степени существуют аналитический метод (так называемые формулы Кардано) , но сейчас нас интересует несколько другая задача.

Поскольку – есть корень нашего многочлена, то многочлен можно представить в виде и возникает Второй вопрос : как отыскать «младшего собрата» ?

Простейшие алгебраические соображения подсказывают, что для этого нужно разделить на . Как разделить многочлен на многочлен? Тем же школьным методом, которым делят обычные числа – «столбиком»! Данный способ я подробнейшим образом разобрал в первых примерах урока Сложные пределы , и сейчас мы рассмотрим другой способ, который получил название схема Горнера .

Сначала запишем «старший» многочлен со всеми , в том числе нулевыми коэффициентами :
, после чего занесём эти коэффициенты (строго по порядку) в верхнюю строку таблицы:

Слева записываем корень :

Сразу же оговорюсь, что схема Горнера работает и в том случае, если «красное» число не является корнем многочлена. Однако не будем торопить события.

Сносим сверху старший коэффициент:

Процесс заполнения нижних ячеек чем-то напоминает вышивание, где «минус единица» – это своеобразная «игла», которая пронизывает последующие шаги. «Снесённое» число умножаем на (–1) и прибавляем к произведению число из верхней ячейки:

Найденное значение умножаем на «красную иглу» и к произведению прибавляем следующий коэффициент уравнения:

И, наконец, полученное значение снова «обрабатываем» «иглой» и верхним коэффициентом:

Ноль в последней ячейке говорит нам о том, что многочлен разделился на без остатка (как оно и должно быть) , при этом коэффициенты разложения «снимаются» прямо из нижней строки таблицы:

Таким образом, от уравнения мы перешли к равносильному уравнению и с двумя оставшимися корнями всё ясно (в данном случае получаются сопряжённые комплексные корни) .

Уравнение , к слову, можно решить и графически: построить «молнию» и увидеть, что график пересекает ось абсцисс () в точке . Или тот же «хитрый» приём – переписываем уравнение в виде , чертим элементарные графики и детектируем «иксовую» координату их точки пересечения.

Кстати, график любой функции-многочлена 3-й степени пересекает ось хотя бы один раз, а значит, соответствующее уравнение имеет по меньшей мере один действительный корень. Данный факт справедлив для любой функции-многочлена нечётной степени.

И тут ещё хочется остановиться на важном моменте , который касается терминологии: многочлен и функция-многочлен это не одно и то же ! Но на практике частенько говорят, например, о «графике многочлена», что, конечно, небрежность.

Однако вернёмся к схеме Горнера. Как я недавно упомянул, эта схема работает и для других чисел, но если число не является корнем уравнения , то в нашей формуле появляется ненулевая добавка (остаток):

«Прогоним» по схеме Горнера «неудачное» значение . При этом удобно использовать ту же таблицу – записываем слева новую «иглу», сносим сверху старший коэффициент (левая зелёная стрелка) , и понеслось:

Для проверки раскроем скобки и приведём подобные слагаемые:
, ОК.

Легко заметить, что остаток («шестёрка») – это в точности значение многочлена при . И в самом деле – что так:
, а ещё приятнее – вот так:

Из приведённых выкладок нетрудно понять, что схема Горнера позволяет не только разложить многочлен на множители, но и осуществить «цивилизованный» подбор корня. Предлагаю вам самостоятельно закрепить алгоритм вычислений небольшой задачей:

Задание 2

Используя схему Горнера, найти целый корень уравнения и разложить соответствующий многочлен на множители

Иными словами, здесь нужно последовательно проверять числа 1, –1, 2, –2, … – до тех пор, пока в последнем столбце не «нарисуется» нулевой остаток. Это будет означать, что «игла» данной строки – есть корень многочлена

Вычисления удобно оформить в единой таблице. Подробное решение и ответ в конце урока.

Способ подбора корней хорош для относительно простых случаев, но если коэффициенты и/или степень многочлена велики, то процесс может затянуться. А может быть какие-то значения из того же списка 1, –1, 2, –2 и рассматривать-то смысла нет? И, кроме того, корни ведь могут оказаться и дробными, что приведёт к уж совсем не научному тыку.

К счастью, существуют две мощные теоремы, которые позволяют значительно сократить перебор значений-«кандидатов» в рациональные корни:

Теорема 1 Рассмотрим несократимую дробь , где . Если число является корнем уравнения , то свободный член делится на , а старший коэффициент – на .

В частности , если старший коэффициент , то этот рациональный корень – целый:

И мы начинаем эксплуатировать теорему как раз с этой вкусной частности:

Вернёмся к уравнению . Так как его старший коэффициент , то гипотетические рациональные корни могут быть исключительно целыми, причём свободный член должен обязательно делиться на эти корни без остатка. А «тройку» можно разделить только на 1, –1, 3 и –3. То есть у нас всего лишь 4 «кандидата в корни». И, согласно Теореме 1 , другие рациональные числа не могут быть корнями данного уравнения В ПРИНЦИПЕ.

В уравнении «претендентов» чуть больше: свободный член делится на 1, –1, 2, – 2, 4 и –4.

Обратите внимание, что числа 1, –1 являются «завсегдатаями» списка возможных корней (очевидное следствие теоремы) и самым лучшим выбором для первоочередной проверки.

Переходим к более содержательным примерам:

Задача 3

Решение : поскольку старший коэффициент , то гипотетические рациональные корни могут быть только целыми, при этом они обязательно должны быть делителями свободного члена. «Минус сорок» делится на следующие пары чисел:
– итого 16 «кандидатов».

И здесь сразу появляется заманчивая мысль: а нельзя ли отсеять все отрицательные или все положительные корни? В ряде случаев можно! Сформулирую два признака:

1) Если все коэффициенты многочлена неотрицательны, то он не может иметь положительных корней. К сожалению, это не наш случай(Вот если бы нам было дано уравнение – тогда да, при подстановке любого значение многочлена строго положительно , а значит, все положительные числа (причём, и иррациональные тоже) не могут быть корнями уравнения .

2) Если коэффициенты при нечётных степенях неотрицательны, а при всех чётных степенях (включая свободный член) – отрицательны, то многочлен не может иметь отрицательных корней. Это наш случай! Немного присмотревшись, можно заметить, что при подстановке в уравнение любого отрицательного «икс» левая часть будет строго отрицательна, а значит, отрицательные корни отпадают

Таким образом, для исследования осталось 8 чисел:

Последовательно «заряжаем» их по схеме Горнера. Надеюсь, вы уже освоили устные вычисления:

Удача поджидала нас при тестировании «двойки». Таким образом – есть корень рассматриваемого уравнения, и

Осталось исследовать уравнение . Это легко сделать через дискриминант, но я проведу показательную проверку по той же схеме. Во-первых, обратим внимание, что свободный член равен 20-ти, а значит, по Теореме 1 из списка возможных корней выпадают числа 8 и 40, и для исследования остаются значения (единица отсеялась по схеме Горнера) .

Записываем коэффициенты трёхчлена в верхнюю строку новой таблицы и начинаем проверку с той же «двойки» . Почему? А потому что корни могут быть и кратны, пожалуйста: – это уравнение имеет 10 одинаковых корней. Но не отвлекаемся:

И здесь, конечно, я немного слукавил, заведомо зная, что корни рациональны. Ведь если бы они были иррациональными или комплексными, то мне светила бы безуспешная проверка всех оставшихся чисел. Поэтому на практике руководствуйтесь дискриминантом.

Ответ : рациональные корни: 2, 4, 5

В разобранной задаче нам сопутствовала удача, потому что: а) сразу отвалились отрицательные значения, и б) мы очень быстро нашли корень (а теоретически могли проверить и весь список ).

Но на самом деле ситуация бывает гораздо хуже. Приглашаю вас к просмотру увлекательной игры под названием «Последний герой»:

Задача 4

Найти рациональные корни уравнения

Решение : по Теореме 1 числители гипотетических рациональных корней должны удовлетворять условию (читаем «двенадцать делится на эль») , а знаменатели – условию . Исходя из этого, получаем два списка:

«список эль»:
и «список эм»: (благо, здесь числа натуральные) .

Теперь составим перечень всех возможных корней. Сначала «список эль» делим на . Совершенно понятно, что получатся те же самые числа. Для удобства занесём их в таблицу:

Многие дроби сократились, в результате чего получись значения, которые уже есть в «списке героев». Добавляем только «новичков»:

Аналогично – делим тот же «список эль» на :

и, наконец, на

Таким образом, команда участников нашей игры укомплектована:


К сожалению, многочлен данной задачи не удовлетворяет «положительному» или «отрицательному» признаку, и поэтому мы не можем отбросить верхнюю или нижнюю строку. Придётся работать со всеми числами.

Как ваше настроение? Да ладно, выше нос – есть ещё одна теорема, которую можно образно назвать «теоремой-убийцей»…. …«кандидатов», конечно же =)

Но сначала нужно прокрутить схему Горнера хотя бы для одного целого числа. Традиционно возьмём единицу. В верхнюю строку запишем коэффициенты многочлена и всё как обычно:

Поскольку четвёрка – это явно не ноль, то значение не является корнем рассматриваемого многочлена. Но она нам очень поможет.

Теорема 2 Если при некотором целом значении значение многочлена отлично от нуля: , то его рациональные корни (если они есть) удовлетворяют условию

В нашем случае и поэтому все возможные корни должны удовлетворять условию (назовём его Условием № 1) . Данная четвёрка и будет «киллером» многих «кандидатов». В качестве демонстрации я рассмотрю несколько проверок:

Проверим «кандидата» . Для этого искусственно представим его в виде дроби , откуда хорошо видно, что . Вычислим проверочную разность: . Четыре делится на «минус два»: , а значит, возможный корень прошёл испытание.

Проверим значение . Здесь и проверочная разность составляет: . Разумеется, , и поэтому второй «испытуемый» тоже остаётся в списке.

Схема Горнера - способ деления многочлена

$$P_n(x)=\sum\limits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots+a_{n-1}x+a_n$$

на бином $x-a$. Работать придётся с таблицей, первая строка которой содержит коэффициенты заданного многочлена. Первым элементом второй строки будет число $a$, взятое из бинома $x-a$:

После деления многочлена n-ой степени на бином $x-a$, получим многочлен, степень которого на единицу меньше исходного, т.е. равна $n-1$. Непосредственное применение схемы Горнера проще всего показать на примерах.

Пример №1

Разделить $5x^4+5x^3+x^2-11$ на $x-1$, используя схему Горнера.

Составим таблицу из двух строк: в первой строке запишем коэффициенты многочлена $5x^4+5x^3+x^2-11$, расположенные по убыванию степеней переменной $x$. Заметьте, что данный многочлен не содержит $x$ в первой степени, т.е. коэффициент перед $x$ в первой степени равен 0. Так как мы делим на $x-1$, то во второй строке запишем единицу:

Начнем заполнять пустые ячейки во второй строке. Во вторую ячейку второй строки запишем число $5$, просто перенеся его из соответствующей ячейки первой строки:

Следующую ячейку заполним по такому принципу: $1\cdot 5+5=10$:

Аналогично заполним и четвертую ячейку второй строки: $1\cdot 10+1=11$:

Для пятой ячейки получим: $1\cdot 11+0=11$:

И, наконец, для последней, шестой ячейки, имеем: $1\cdot 11+(-11)=0$:

Задача решена, осталось только записать ответ:

Как видите, числа, расположенные во второй строке (между единицей и нулём), есть коэффициенты многочлена, полученного после деления $5x^4+5x^3+x^2-11$ на $x-1$. Естественно, что так как степень исходного многочлена $5x^4+5x^3+x^2-11$ равнялась четырём, то степень полученного многочлена $5x^3+10x^2+11x+11$ на единицу меньше, т.е. равна трём. Последнее число во второй строке (ноль) означает остаток от деления многочлена $5x^4+5x^3+x^2-11$ на $x-1$. В нашем случае остаток равен нулю, т.е. многочлены делятся нацело. Этот результат ещё можно охарактеризовать так: значение многочлена $5x^4+5x^3+x^2-11$ при $x=1$ равно нулю.

Можно сформулировать вывод и в такой форме: так как значение многочлена $5x^4+5x^3+x^2-11$ при $x=1$ равно нулю, то единица является корнем многочлена $5x^4+5x^3+x^2-11$.

Пример №2

Разделить многочлен $x^4+3x^3+4x^2-5x-47$ на $x+3$ по схеме Горнера.

Сразу оговорим, что выражение $x+3$ нужно представить в форме $x-(-3)$. В схеме Горнера будет учавствовать именно $-3$. Так как степень исходного многочлена $x^4+3x^3+4x^2-5x-47$ равна четырём, то в результате деления получим многочлен третьей степени:

Полученный результат означает, что

$$x^4+3x^3+4x^2-5x-47=(x+3)(x^3+0\cdot x^2 +4x-17)+4=(x+3)(x^3+4x-17)+4$$

В этой ситуации остаток от деления $x^4+3x^3+4x^2-5x-47$ на $x+3$ равна $4$. Или, что то самое, значение многочлена $x^4+3x^3+4x^2-5x-47$ при $x=-3$ равно $4$. Кстати, это несложно перепроверить непосредственной подстановкой $x=-3$ в заданный многочлен:

$$x^4+3x^3+4x^2-5x-47=(-3)^4+3 \cdot (-3)^3-5 \cdot (-3)-47=4.$$

Т.е. схему Горнера можно использовать, если необходимо найти значение многочлена при заданном значении переменной. Если наша цель - найти все корни многочлена, то схему Горнера можно применять несколько раз подряд, - до тех пор, пока мы не исчерпаем все корни, как рассмотрено в примере №3.

Пример №3

Найти все целочисленные корни многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$, используя схему Горнера.

Коэффициенты рассматриваемого многочлена есть целые числа, а коэффициент перед старшей степенью переменной (т.е. перед $x^6$) равен единице. В этом случае целочисленные корни многочлена нужно искать среди делителей свободного члена, т.е. среди делителей числа 45. Для заданного многочлена такими корнями могут быть числа $45; \; 15; \; 9; \; 5; \; 3; \; 1$ и $-45; \; -15; \; -9; \; -5; \; -3; \; -1$. Проверим, к примеру, число $1$:

Как видите, значение многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$ при $x=1$ равно $192$ (последнее число в второй строке), а не $0$, посему единица не является корнем данного многочлена. Так как проверка для единицы окончилась неудачей, проверим значение $x=-1$. Новую таблицу для этого составлять не будем, а продолжим использование табл. №1, дописав в нее новую (третью) строку. Вторую строку, в которой проверялось значение $1$, выделим красным цветом и в дальнейших рассуждениях использовать её не будем.

Можно, конечно, просто переписать таблицу заново, но при заполнении вручную это займет немало времени. Тем более, что чисел, проверка которых окончится неудачей, может быть несколько, и каждый раз записывать новую таблицу затруднительно. При вычислении «на бумаге» красные строки можно просто вычёркивать.

Итак, значение многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$ при $x=-1$ равно нулю, т.е. число $-1$ есть корень этого многочлена. После деления многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$ на бином $x-(-1)=x+1$ получим многочлен $x^5+x^4-22x^3+2x^2+69x+45$, коэффициенты которого взяты из третьей строки табл. №2 (см. пример №1). Результат вычислений можно также представить в такой форме:

\begin{equation}x^6+2x^5-21x^4-20x^3+71x^2+114x+45=(x+1)(x^5+x^4-22x^3+2x^2+69x+45) \end{equation}

Продолжим поиск целочисленных корней. Теперь уже нужно искать корни многочлена $x^5+x^4-22x^3+2x^2+69x+45$. Опять-таки, целочисленные корни этого многочлена ищут среди делителей его свободного члена, - числа $45$. Попробуем ещё раз проверить число $-1$. Новую таблицу составлять не будем, а продолжим использование предыдущей табл. №2, т.е. допишем в нее еще одну строку:

Итак, число $-1$ является корнем многочлена $x^5+x^4-22x^3+2x^2+69x+45$. Этот результат можно записать так:

\begin{equation}x^5+x^4-22x^3+2x^2+69x+45=(x+1)(x^4-22x^2+24x+45) \end{equation}

Учитывая равенство (2), равенство (1) можно переписать в такой форме:

\begin{equation}\begin{aligned} & x^6+2x^5-21x^4-20x^3+71x^2+114x+45=(x+1)(x^5+x^4-22x^2+2x^2+69x+45)=\\ & =(x+1)(x+1)(x^4-22x^2+24x+45)=(x+1)^2(x^4-22x^2+24x+45)\end{aligned}\end{equation}

Теперь уже нужно искать корни многочлена $x^4-22x^2+24x+45$, - естественно, среди делителей его свободного члена (числа $45$). Проверим еще раз число $-1$:

Число $-1$ является корнем многочлена $x^4-22x^2+24x+45$. Этот результат можно записать так:

\begin{equation}x^4-22x^2+24x+45=(x+1)(x^3-x^2-21x+45) \end{equation}

С учетом равенства (4), равенство (3) перепишем в такой форме:

\begin{equation}\begin{aligned} & x^6+2x^5-21x^4-20x^3+71x^2+114x+45=(x+1)^2(x^4-22x^3+24x+45)= \\ & =(x+1)^2(x+1)(x^3-x^2-21x+45)=(x+1)^3(x^3-x^2-21x+45)\end{aligned}\end{equation}

Теперь ищем корни многочлена $x^3-x^2-21x+45$. Проверим еще раз число $-1$:

Проверка окончилась неудачей. Выделим шестую строку красным цветом и попробуем проверить иное число, например, число $3$:

В остатке ноль, посему число $3$ - корень рассматриваемого многочлена. Итак, $x^3-x^2-21x+45=(x-3)(x^2+2x-15)$. Теперь равенство (5) можно переписать так.

Описание алгоритма

Задан многочлен :

.

Пусть требуется вычислить значение данного многочлена при фиксированном значении . Представим многочлен в следующем виде:

.

Определим следующую последовательность:

… …

Искомое значение . Покажем, что это так.

В полученную форму записи подставим и будем вычислять значение выражения, начиная со внутренних скобок. Для этого будем заменять подвыражения через :

Использование схемы Горнера для деления многочлена на бином

При делении многочлена на получается многочлен с остатком .

При этом коэффициенты результирующего многочлена удовлетворяют рекуррентным соотношениям:

, .

Таким же образом можно определить кратность корней (использовать схему Горнера для нового полинома). Так же схему можно использовать для нахождения коэффициентов при разложении полинома по степеням:

Примечания

См. также

Литература

  • Ананий В. Левитин Глава 6. Метод преобразования: Схема Горнера и возведение в степень // Алгоритмы: введение в разработку и анализ = Introduction to The Design and Analysis of Aigorithms. - М .: «Вильямс», 2006. - С. 284-291. - ISBN 0-201-74395-7
  • Волков Е. А. § 2. Вычисление значений многочлена. Схема Горнера // Численные методы. - Учеб. пособие для вузов. - 2-е изд., испр. - М .: Наука, 1987. - 248 с.
  • С. Б. Гашков §14. Схема Горнера и перевод из одной позиционной системы в другую // Системы счисления и их применение . - М .: МЦНМО , 2004. - С. 37-39. - (Библиотека «Математическое просвещение»). - ISBN 5-94057-146-8

Ссылки

  • Вычисление многомерных полиномов - обобщение схемы Горнера на случай полинома от нескольких переменных.

Wikimedia Foundation . 2010 .

  • Хлорхинальдол
  • Штильмарк, Александр Робертович

Смотреть что такое "Схема Горнера" в других словарях:

    ГОРНЕРА СХЕМА - прием для нахождения неполного частного и остатка при делении многочлена на двучлен, где все коэффициенты лежат в нек ром поле, напр., в поле комплексных чисел. Всякий многочлен единственным способом представим в виде где есть неполное частное,… … Математическая энциклопедия

    Метод Горнера - Схема Горнера (или правило Горнера, метод Горнера) алгоритм вычисления значения многочлена, записанного в виде суммы мономов, при заданном значении переменной. Метод Горнера позволяет найти корни многочлена, а также вычислить производные… … Википедия

    Корень многочлена - У этого термина существуют и другие значения, см. Корень (значения). Корень многочлена (не равного тождественно нулю) над полем k элемент, такой что выполняются два следующих равносильных условия: данный многочлен делится на многочлен;… … Википедия

    Деление многочленов столбиком - В алгебре деление многочленов столбиком алгоритм деления многочлена на многочлен, степень которого меньше или равна степени многочлена. Алгоритм представляет собой обобщенную форму деления чисел столбиком, легко реализуемую вручную. Для… … Википедия

    Хорнер, Уильям Джордж - Уильям Джордж Хорнер (1786 год, Бристоль 22 сентября 1837 года) британский математик. Родился в 1786 году в городе Бристоль в Англии. Получил образование в Кингствудской школе Бристоля. В возрасте 14 лет он стал помощником директора в… … Википедия

    Плечевое сплетение - I Плечевое сплетение (plexus brachialis) сплетение нервных волокон передних ветвей 4 8 шейных и 1 2 грудных спинномозговых нервов в несколько стволов и пучков, в результате последующего разделения которых формируются короткие и длинные нервы… … Медицинская энциклопедия

    РАДИКУЛИТЫ - (от лат. radix корень), заболевания корешков спинномозговых нервов, термин, утвердившийся в начале 20 в. благодаря работам Дежерина и его школы. В основе Р. лежит воспалительно дегенеративный процесс в корешках [см. отдельную таблицу (ст. 255… …

    ЩИТОВИДНАЯ ЖЕЛЕЗА - (gl. thyreoidea, син. corpus thyreoideum), одна из важнейших желез внутренней секреции позвоночных животных. В эмбриональном развитии Щ. ж. возникает из эпителия нижней стенки жаберной части кишечника; у личинок круглоротых рыб она имеет еще вид… … Большая медицинская энциклопедия

    Радикулит - I Радикулит (radiculitis; лат. radicula корешок + itis) воспалительное и компрессионное поражение корешков спинномозговых нервов. Сочетанное поражение переднего и заднего корешков на уровне их соединения в общий канатик (рис.) ранее обозначали… … Медицинская энциклопедия

    Спина́льное кровообраще́ние - (синоним спинномозговое кровообращение) Установлено, что несколько верхних шейных сегментов спинного мозга снабжают кровью передняя и задняя спинальные артерии, отходящие от позвоночных артерий. Сегменты, расположенные ниже сегментов CIII CIV,… … Медицинская энциклопедия








Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока : Урок усвоения и закрепления первичных знаний.

Цель урока:

  • Ознакомить учеников с понятием корней многочлена, научить находить их. Усовершенствовать навыки применения схемы Горнера по разложению многочлена по степеням и деления многочлена на двучлен.
  • Научиться находить корни уравнения с помощью схемы Горнера.
  • Развивать абстрактное мышление.
  • Воспитывать вычислительную культуру.
  • Развитие межпредметных связей.

Ход урока

1. Организационный момент.

Сообщить тему урока, сформулировать цели.

2. Проверка домашнего задания.

3. Изучение нового материала.

Пусть F n (x)= a n x n +a n-1 x n-1 +...+ a 1 x +a 0 - многочлен относительно x степени n, где a 0 , a 1 ,...,a n –данные числа, причем a 0 не равно 0. Если многочлен F n (x) разделить с остатком на двучлен x-a, то частное (неполное частное) есть многочлен Q n-1 (x) степени n-1, остаток R есть число, при этом справедливо равенство F n (x)=(x-a) Q n-1 (x) +R. Многочлен F n (x) делится нацело на двучлен (x-a) только в случае R=0.

Теорема Безу: Остаток R от деления многочлена F n (x) на двучлен (x-a) равен значению многочлена F n (x) при x=a, т.е. R= P n (a).

Немного истории. Теорема Безу, несмотря на внешнюю простоту и очевидность, является одной из фундаментальных теорем теории многочленов. В этой теореме алгебраические свойства многочленов (которые позволяют работать с многочленами как с целыми числами) связываются с их функциональными свойствами (которые позволяют рассматривать многочлены как функции). Одним из способов решения уравнений высших степеней является способ разложения на множители многочлена, стоящего в левой части уравнения. Вычисление коэффициентов многочлена и остатка записывается в виде таблицы, которая называется схемой Горнера.

Схема Горнера – это алгоритм деления многочленов, записанный для частного случая, когда частное равно двучлену x–a .

Горнер Уильям Джордж (1786 - 1837), английский математик. Основные исследования относятся к теории алгебраических уравнений. Разработал способ приближенного решения уравнений любой степени. В 1819 г. ввёл важный для алгебры способ деления многочлена на двучлен х - а (схема Горнера).

Вывод общей формулы для схемы Горнера.

Разделить с остатком многочлен f(x) на двучлен (x-c) значит найти такой многочлен q(x) и такое число r, что f(x)=(x-c)q(x)+r

Запишем это равенство подробно:

f 0 x n + f 1 x n-1 + f 2 x n-2 + ...+f n-1 x + f n =(x-c) (q 0 x n-1 + q 1 x n-2 + q 2 x n-3 +...+ q n-2 x + q n-1)+r

Приравняем коэффициенты при одинаковых степенях:

x n: f 0 = q 0 => q 0 = f 0
x n-1: f 1 = q 1 - c q 0 => q 1 = f 1 + c q 0
x n-2: f 2 = q 2 - c q 1 => q 2 = f 2 + c q 1
... ...
x 0: f n = q n - c q n-1 => q n = f n + c q n-1.

Демонстрация схемы Горнера на примере.

Задание 1. С помощью схемы Горнера разделим с остатком многочлен f(x) = x 3 - 5x 2 + 8 на двучлен x-2.

1 -5 0 8
2 1 2*1+(-5)=-3 2*(-3)+0=-6 2*(-6)+8=-4

f(x) = x 3 - 5x 2 + 8 =(x-2)(x 2 -3x-6)-4, где g(x)= (x 2 -3x-6), r = -4 остаток.

Разложение многочлена по степеням двучлена.

Используя схему Горнера, разложим многочлен f(x)=x 3 +3x 2 -2x+4 по степеням двучлена (x+2).

В результате должны получить разложение f(x) = x 3 +3x 2 -2x+4 = (x+2)(x 2 +x-4)+12 = (x+2)((x-1)(x+2)-2)+12 = (((1*(x+2)-3)(x+2)-2)(x+2))+12 = (x+2) 3 -3(x+2) 2 -2(x+2)+12

Схему Горнера часто используют при решении уравнений третьей, четвертой и выших степеней, когда удобно разложить многочлен на двучлен x-a. Число a называют корнем многочлена F n (x) = f 0 x n + f 1 x n-1 + f 2 x n-2 + ...+f n-1 x + f n , если при x=a значение многочлена F n (x) равно нулю: F n (a)=0, т.е. если многочлен делится нацело на двучлен x-a.

Например, число 2 является корнем многочлена F 3 (x)=3x 3 -2x-20, так как F 3 (2)=0. это означает. Что разложение этого многочлена на множители содержит множитель x-2.

F 3 (x)=3x 3 -2x-20=(x-2)(3x 2 +6x+10).

Любой многочлен F n (x) степени n 1 может иметь не более n действительных корней.

Любой целый корень уравнения с целыми коэффициентами является делителем его свободного члена.

Если старший коэффициент уравнения равен 1, то все рациональные корни уравнения, если они существуют, целые.

Закрепление изученного материала.

Для закрепления нового материала учащимся предлагается выполнить номера из учебника 2.41 и 2.42 (стр. 65).

(2 ученика решают у доски, а остальные, решив, в тетради задания сверяются с ответами на доске).

Подведение итогов.

Поняв структуру и принцип действия схемы Горнера, ее можно использовать и на уроках информатики, когда рассматривается вопрос о переводе целых чисел из десятичной системы счисления в двоичную и обратно. В основе перевода из одной системы счисления в другую лежит следующая общая теорема

Теорема. Для перевода целого числа Ap из p -ичной системы счисления в систему счисления с основанием d необходимо Ap последовательно делить с остатком на число d , записанное в той же p -ичной системе, до тех пор, пока полученное частное не станет равным нулю. Остатки от деления при этом будут являться d -ичными цифрами числа Ad , начиная от младшего разряда к старшему. Все действия необходимо проводить в p -ичной системе счисления. Для человека данное правило удобно лишь при p = 10, т.е. при переводе из десятичной системы. Что касается компьютера, то ему, напротив, “удобнее” производить вычисления в двоичной системе. Поэтому для перевода “2 в 10” используется последовательное деление на десять в двоичной системе, а “10 в 2” - сложение степеней десятки. Для оптимизации вычислений процедуры “10 в 2” компьютер использует экономную вычислительную схему Горнера.

Домашнее задание. Предлагается выполнить два задание.

1-е. Используя схему Горнера разделить многочлен f(x)=2x 5 -x 4 -3x 3 +x-3 на двучлен (x-3).

2-е. Найти целые корни многочлена f(x)=x 4 -2x 3 +2x 2 -x-6.(учитывая, что любой целый корень уравнения с целыми коэффициентами является делителем его свободного члена)

Литература.

  1. Курош А.Г. “Курс высшей алгебры”.
  2. Никольский С.М, Потапов М.К. и др. 10 класс “Алгебра и начала математического анализа”.
  3. http://inf.1september.ru/article.php?ID=200600907.

При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше. В этой статье мы рассмотрим, каким образом это сделать проще всего.

Как обычно, обратимся за помощью к теории.

Теорема Безу утверждает, что остаток от деления многочлена на двучлен равен .

Но для нас важна не сама теорема, а следствие из нее:

Если число является корнем многочлена , то многочлен делится без остатка на двучлен .

Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на , где - корень многочлена. В результате мы получаем многочлен, степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.

Эта задача распадается на две: как найти корень многочлена, и как разделить многочлен на двучлен .

Остановимся подробнее на этих моментах.

1. Как найти корень многочлена.

Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.

Здесь нам помогут такие факты:

Если сумма всех коэффициентов многочлена равна нулю, то число является корнем многочлена.

Например, в многочлене сумма коэффициентов равна нулю: . Легко проверить, что является корнем многочлена.

Если сумма коэффициентов многочлена при четных степенях равна сумме коэффициентов при нечетных степенях, то число является корнем многочлена. Свободный член считается коэффициентом при четной степени, поскольку , а - четное число.

Например, в многочлене сумма коэффициентов при четных степенях : , и сумма коэффициентов при нечетных степенях : . Легко проверить, что является корнем многочлена.

Если ни 1, ни -1 не являются корнями многочлена, то двигаемся дальше.

Для приведенного многочлена степени (то есть многочлена, в котором старший коэффициент - коэффициент при - равен единице) справедлива формула Виета:

Где - корни многочлена .

Есть ещё формул Виета, касающихся остальных коэффициентов многочлена, но нас интересует именно эта.

Из этой формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.

Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.

Рассмотрим, например, многочлен

Делители свободного члена: ; ; ;

Сумма всех коэффициентов многочлена равна , следовательно, число 1 не является корнем многочлена.

Сумма коэффициентов при четных степенях :

Сумма коэффициентов при нечетных степенях :

Следовательно, число -1 также не является корнем многочлена.

Проверим, является ли число 2 корнем многочлена: , следовательно, число 2 является корнем многочлена. Значит, по теореме Безу, многочлен делится без остатка на двучлен .

2. Как разделить многочлен на двучлен.

Многочлен можно разделить на двучлен столбиком.

Разделим многочлен на двучлен столбиком:


Есть и другой способ деления многочлена на двучлен - схема Горнера.


Посмотрите это видео, чтобы понять, как делить многочлен на двучлен столбиком, и с помощью схемы Горнера.

Замечу, что если при делении столбиком какая-то степень неизвестного в исходном многочлене отсутствует, на её месте пишем 0 - так же, как при составлении таблицы для схемы Горнера.

Итак, если нам нужно разделить многочлен на двучлен и в результате деления мы получаем многочлен , то коэффициенты многочлена мы можем найти по схеме Горнера:


Мы также можем использовать схему Горнера для того, чтобы проверить, является ли данное число корнем многочлена: если число является корнем многочлена , то остаток от деления многочлена на равен нулю, то есть в последнем столбце второй строки схемы Горнера мы получаем 0.

Используя схему Горнера, мы "убиваем двух зайцев": одновременно проверяем, является ли число корнем многочлена и делим этот многочлен на двучлен .

Пример. Решить уравнение:

1. Выпишем делители свободного члена, и будем искать корни многочлена среди делителей свободного члена.

Делители числа 24:

2. Проверим, является ли число 1 корнем многочлена.

Сумма коэффициентов многочлена , следовательно, число 1 является корнем многочлена.

3. Разделим исходный многочлен на двучлен с помощью схемы Горнера.

А) Выпишем в первую строку таблицы коэффициенты исходного многочлена.

Так как член, содержащий отсутствует, в том столбце таблицы, в котором должен стоять коэффициент при пишем 0. Слева пишем найденный корень: число 1.

Б) Заполняем первую строку таблицы.

В последнем столбце, как и ожидалось, мы получили ноль, мы разделили исходный многочлен на двучлен без остатка. Коэффициенты многочлена, получившегося в результате деления изображены синим цветом во второй строке таблицы:

Легко проверить, что числа 1 и -1 не являются корнями многочлена

В) Продолжим таблицу. Проверим, является ли число 2 корнем многочлена :

Так степень многочлена, который получается в результате деления на единицу меньше степени исходного многочлена, следовательно и количество коэффициентов и количество столбцов на единицу меньше.

В последнем столбце мы получили -40 - число, не равное нулю, следовательно, многочлен делится на двучлен с остатком, и число 2 не является корнем многочлена.

В) Проверим, является ли число -2 корнем многочлена . Так как предыдущая попытка оказалась неудачной, чтобы не было путаницы с коэффициентами, я сотру строку, соответствующую этой попытке:


Отлично! В остатке мы получили ноль, следовательно, многочлен разделился на двучлен без остатка, следовательно, число -2 является корнем многочлена. Коэффициенты многочлена, который получается в результате деления многочлена на двучлен в таблице изображены зеленым цветом.

В результате деления мы получили квадратный трехчлен , корни которого легко находятся по теореме Виета:

Итак, корни исходного уравнения :

{}

Ответ: {}