Педагогика

Уравнение с параметром единственное решение. Системы уравнений с параметром. Графические способы решения уравнений

При каких значениях параметра $a$ неравенство ${}-x^2 + (a + 2)x - 8a - 1 > 0$ имеет хотя бы одно решение?

Решение

Приведем данное неравенство к положительному коэффициенту при $x^2$:

${}-x^2 + (a + 2)x - 8a - 1 > 0 \quad \Leftrightarrow \quad x^2 - (a + 2)x + 8a + 1 < 0 .$

Вычислим дискриминант: $D = (a + 2)^2 - 4(8a + 1) = a^2 + 4a + 4 - 32a - 4 = a^2 - 28a$. Чтобы данное неравенство имело решение, необходимо, чтобы хотя бы одна точка параболы лежала ниже оси $x$. Так как ветви параболы направлены вверх, то для этого нужно, чтобы квадратный трёхчлен в левой части неравенства имел два корня, то есть его дискриминант был положительным. Мы приходим к необходимости решить квадратное неравенство $a^2 - 28a > 0$. Квадратный трехчлен $a^2 - 28a$ имеет два корня: $a_1 = 0$, $a_2 = 28$. Поэтому неравенству $a^2 - 28a > 0$ удовлетворяют промежутки $a \in (-\infty; 0) \cup (28; + \infty)$.

Ответ. $a \in (-\infty; 0) \cup (28; + \infty)$.

При каких значениях параметра $a$ уравнение $(a-2)x^2-2ax+a+3=0$ имеет хотя бы один корень, и при этом все корни положительны?

Решение

Пусть $a=2$. Тогда уравнение принимает вид ${} - 4x +5 = 0$ , откуда получаем, что $x=\dfrac{5}{4}$ - положительный корень.

Пусть теперь $a\ne 2$. Получается квадратное уравнение. Определим сначала, при каких значениях параметра $a$ данное уравнение имеет корни. Нужно, чтобы его дискриминант был неотрицателен. То есть:

$ D = 4a^2 - 4(a-2)(a+3) ={} -4a+24\geqslant 0\Leftrightarrow a\leqslant 6.$

Корни по условию должны быть положительны, следовательно, из теоремы Виета получаем систему:

$ \begin{cases}x_1 + x_2 = \dfrac{2a}{a - 2}>0,\\ x_1x_2 = \dfrac{a + 3}{a - 2}> 0,\\a\leqslant 6\end{cases} \quad \Leftrightarrow \quad \begin{cases}a\in(- \infty;0)\cup(2; +\infty), \\ a\in(- \infty;-3)\cup(2; +\infty), \\ a\in(-\infty;6] \end{cases}\quad\Leftrightarrow \quad a\in(-\infty;-3)\cup(2;6]. $

Объединяем ответы, получаем искомое множество: $a\in(-\infty;-3)\cup$.

Ответ. $a\in(-\infty;-3)\cup$.

При каких значениях параметра $a$ неравенство $ax^2 + 4ax + 5 \leqslant 0$ не имеет решений?

Решение

  1. Если $a = 0$, то данное неравенство вырождается в неравенство $5 \leqslant 0$ , которое не имеет решений. Поэтому значение $a = 0$ удовлетворяет условию задачи.
  2. Если $a > 0$, то график квадратного трехчлена в левой части неравенства - парабола с ветвями, направленными вверх. Вычислим $\dfrac{D}{4} = 4a^2 - 5a$. Неравенство не имеет решений, если парабола расположена выше оси абсцисс, то есть когда квадратный трёхчлен не имеет корней ($D < 0$). Решим неравенство $4a^2 - 5a < 0$. Корнями квадратного трёхчлена $4a^2 - 5a$ являются числа $a_1 = 0$ и $a_2 = \dfrac{5}{4}$, поэтому $D < 0$ при $0 < a < \dfrac{5}{4}$. Значит, из положительных значений $a$ подходят числа $a \in \left(0; \dfrac{5}{4}\right)$.
  3. Если $a < 0$, то график квадратного трехчлена в левой части неравенства - парабола с ветвями, направленными вниз. Значит, обязательно найдутся значения $х$, для которых трёхчлен отрицателен. Следовательно, все значения $a < 0$ не подходят.

Ответ. $a \in \left$ лежит между корнями, поэтому корней должно быть два (значит, $a\ne 0$). Если ветви параболы $y = ax^2 + (a + 3)x - 3a$ направлены вверх, то $y(-1) < 0$ и $y(1) < 0$; если же они направлены вниз, то $y(-1) > 0$ и $y(1) > 0$.

Случай I. Пусть $a > 0$. Тогда

$\left\{ \begin{array}{l} y(-1)=a-(a+3)-3a=-3a-3<0 \\ y(1)=a+(a+3)-3a=-a+3<0 \\ a>0 \end{array} \right. \quad \Leftrightarrow \quad \left\{ \begin{array}{l} a>-1 \\ a>3 \\ a>0 \end{array} \right.\quad \Leftrightarrow \quad a>3.$

То есть в этом случае получается, что подходят все $a > 3$.

Cлучай II. Пусть $a < 0$. Тогда

$\left\{ \begin{array}{l} y(-1)=a-(a+3)-3a=-3a-3>0 \\ y(1)=a+(a+3)-3a=-a+3>0 \\ a<0 \end{array} \right.\quad \Leftrightarrow \quad \left\{ \begin{array}{l} a<-1 \\ a<3 \\ a<0 \end{array} \right.\quad \Leftrightarrow \quad a<-1.$

То есть в этом случае получается, что подходят все $a < -1$.

Ответ. $a\in (-\infty ;-1)\cup (3;+\infty)$

Найдите все значения параметра $a$, при каждом из которых система уравнений

$ \begin{cases} x^2+y^2 = 2a, \\ 2xy=2a-1 \end{cases} $

имеет ровно два решения.

Решение

Вычтем из первого второе: $(x-y)^2 = 1$. Тогда

$ \left[\begin{array}{l} x-y = 1, \\ x-y = -1 \end{array}\right. \quad \Leftrightarrow \quad \left[\begin{array}{l} x = y+1, \\ x = y-1. \end{array}\right. $

Подставляя полученные выражения во второе уравнение системы, получаем два квадратных уравнения: $2y^2 + 2y - 2a + 1 = 0$ и $2y^2 - 2y - 2a + 1 =0$. Дискриминант каждого из них равен $D = 16a-4$.

Заметим, что не может получиться так, что пара корней первого из квадратных уравнений совпадает с парой корней второго квадратного уравнения, так как сумма корней первого равна $-1$, а второго 1.

Значит, нужно, чтобы у каждого из этих уравнений было по одному корню, тогда у исходной системы их будет два решения. То есть $D = 16a - 4 = 0$.

Ответ. $a=\dfrac{1}{4}$

Найдите все значения параметра $a$, при каждом из которых уравнение $4x-|3x-|x+a||=9|x-3|$ имеет два корня.

Решение

Перепишем уравнение в виде:

$ 9|x-3|-4x+|3x-|x+a|| = 0. $

Рассмотрим функцию $f(x) = 9|x-3|-4x+|3x-|x+a||$.

При $x\geqslant 3$ первый модуль раскрывается со знаком плюс, и функция принимает вид: $f(x) = 5x-27+|3x-|x+a||$. Очевидно, что при любом раскрытии модулей в итоге будет получаться линейная функция с коэффициентом $k\geqslant 5-3-1=1>0$, то есть эта функция на данном промежутке неограниченно возрастает.

Рассмотрим теперь промежуток $x<3$. В этом случае первый модуль раскрывается с минусом, и функция принимает следующий вид: $f(x) = - 13x+27+|3x-|x+a||$. При любом раскрытии модулей в итоге будет получаться линейная функция с коэффициентом $k\leqslant - 13+3+1 = - 9<0$, то есть на этом промежутке функция убывает.

Итак, мы получили, что $x=3$ - точка минимума данной функции. А это означает, что для того чтобы у исходного уравнения было два решения, значение функции в точке минимума должно быть меньше нуля. То есть имеет место неравенство: $f(3)<0$.

$ 12-|9-|3+a||>0 \quad \Leftrightarrow \quad |9-|3+a|| < 12 \quad \Leftrightarrow \quad -12 < 9-|3+a| < 12 \quad \Leftrightarrow \quad$

$\Leftrightarrow\quad |3+a| < 21 \quad \Leftrightarrow \quad - 21 < 3+a < 21 \quad \Leftrightarrow \quad -24

Ответ. $a \in (-24; 18)$

При каких значениях параметра $a$ уравнение $5^{2x}-3\cdot 5^x+a-1=0$ имеет единственный корень?

Решение

Сделаем замену: $t = 5^x > 0$. Тогда первоначальное уравнение принимает вид квадратного уравнения: $t^2-3t+a-1 =0$. Исходное уравнение будет иметь единственный корень в том случае, если у данного уравнения будет один положительный корень либо два корня, один из которых положительный, другой - отрицательный.

Дискриминант уравнения равен: $D = 13-4a$. Один корень это уравнение будет иметь в том случае, если полученный дискриминант окажется равным нулю, то есть при $a = \dfrac{13}{4}$. При этом корень $t=\dfrac{3}{2} > 0$, поэтому данное значение $a$ подходит.

Если есть два корня, один из которых положителен, другой - неположителен, то $D = 13-4a > 0$, $x_1+x_2 = 3 > 0$ и $x_1x_2 = a - 1 \leqslant 0$.

То есть $a\in(-\infty;1]$

Ответ. $a\in(-\infty;1]\cup\left\{\dfrac{13}{4}\right\}$

Найдите все значения параметра $a$, при которых система

$ \begin{cases}\log_a y = (x^2-2x)^2, \\ x^2+y=2x\end{cases} $

имеет ровно два решения.

Решение

Преобразуем систему к следующему виду:

$ \begin{cases} \log_a y = (2x-x^2)^2, \\ y = 2x-x^2. \end{cases} $

Поскольку параметр $a$ находится в основании логарифма, на него накладываются следующие ограничения: $a>0$, $a \ne 1$. Поскольку переменная $y$ является аргументом логарифма, то $y > 0$.

Скомбинировав оба уравнения системы, переходим к уравнению: $\log_a y = y^2$. В зависимости от того, какие значения принимает параметр $a$, возможны два случая:

  1. Пусть $0 < a < 1$. В этом случае функция $f(y) = \log_a y$ убывает на области определения, а функция $g(y)=y^2$ возрастает в той же области $y > 0$. Из поведения графиков очевидно, что корень уравнения один, при этом он меньше 1. Второе уравнение системы и вся система в целом имеют, следовательно, два решения, в силу того что дискриминант уравнения $ x^2-2x+y = 0$ при $0
  2. Пусть теперь $a > 1$. В этом случае функция $f(y)=\log_a y \leqslant 0$ при $y < 1$, а функция $g(y) = y^2 > 0$ при тех же $y$. Значит, если решения и есть, то только при $y > 1$, но второе уравнение системы решений иметь не будет, так как дискриминант уравнения $x^2 - 2x + y = 0$ при $y > 1$ отрицателен.

Ответ. $a\in(0;1)$

Рассмотрим случай, когда $a > 1$. Так как при больших по модулю значениях $t$ график функции $f(t) = a^t$ лежит выше прямой $g(t) = t$, то единственная общая точка может быть только точкой касания.

Пусть $t_0$ - точка касания. В этой точке производная к $f(t) = a^t$ равняется единице (тангенс угла наклона касательной), кроме того, значения обоих функций совпадают, то есть имеет место система:

$ \begin{cases} a^{t_0}\ln a = 1, \\ a^{t_0} = t_0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} a^{t_0} = \dfrac{1}{\ln a}, \\ a^{\tau} = \tau \end{cases} $

Откуда $t_0 = \dfrac{1}{\ln a}$.

$ a^{\frac{1}{\ln a}}\ln a = 1 \quad \Leftrightarrow \quad a^{\log_a e} =\frac{1}{\ln a} \quad \Leftrightarrow \quad a = e^{\frac{1}{e}}. $

При этом других общих точек у прямой и показательной функции очевидно нет.

Ответ. $a \in (0;1] \cup \left\{e^{e^{-1}}\right\}$

К задачам с параметром можно отнести, например, поиск решения линейных и квадратных уравнений в общем виде, исследование уравнения на количество имеющихся корней в зависимости от значения параметра.

Не приводя подробных определений, в качестве примеров рассмотрим следующие уравнения:

у = kx, где x, y – переменные, k – параметр;

у = kx + b, где x, y – переменные, k и b – параметр;

аx 2 + bх + с = 0, где x – переменные, а, b и с – параметр.

Решить уравнение (неравенство, систему) с параметром это значит, как правило, решить бесконечное множество уравнений (неравенств, систем).

Задачи с параметром можно условно разделить на два типа:

а) в условии сказано: решить уравнение (неравенство, систему) – это значит, для всех значений параметра найти все решения. Если хотя бы один случай остался неисследованным, признать такое решение удовлетворительным нельзя.

б) требуется указать возможные значения параметра, при которых уравнение (неравенство, система) обладает определенными свойствами. Например, имеет одно решение, не имеет решений, имеет решения, принадлежащие промежутку и т. д. В таких заданиях необходимо четко указать, при каком значении параметра требуемое условие выполняется.

Параметр, являясь неизвестным фиксированным числом, имеет как бы особую двойственность. В первую очередь, необходимо учитывать, что предполагаемая известность говорит о том, что параметр необходимо воспринимать как число. Во вторую очередь, свобода обращения с параметром ограничивается его неизвестностью. Так, например, операции деления на выражение, в котором присутствует параметр или извлечения корня четной степени из подобного выражения требуют предварительных исследований. Поэтому необходима аккуратность в обращении с параметром.

Например, чтобы сравнить два числа -6а и 3а, необходимо рассмотреть три случая:

1) -6a будет больше 3a, если а отрицательное число;

2) -6а = 3а в случае, когда а = 0;

3) -6а будет меньше, чем 3а, если а – число положительное 0.

Решение и будет являться ответом.

Пусть дано уравнение kx = b. Это уравнение – краткая запись бесконечного множества уравнений с одной переменной.

При решении таких уравнений могут быть случаи:

1. Пусть k – любое действительное число не равное нулю и b – любое число изR, тогда x = b/k.

2. Пусть k = 0 и b ≠ 0, исходное уравнение примет вид 0 · x = b. Очевидно, что у такого уравнения решений нет.

3. Пусть k и b числа, равные нулю, тогда имеем равенство 0 · x = 0. Его решение – любое действительное число.

Алгоритм решения такого типа уравнений:

1. Определить «контрольные» значения параметра.

2. Решить исходное уравнение относительно х при тех значениях параметра, которые были определены в первом пункте.

3. Решить исходное уравнение относительно х при значениях параметра, отличающихся от выбранных в первом пункте.

4. Записать ответ можно в следующем виде:

1) при … (значения параметра), уравнение имеет корни …;

2) при … (значения параметра), в уравнении корней нет.

Пример 1.

Решить уравнение с параметром |6 – x| = a.

Решение.

Легко видеть, что здесь a ≥ 0.

По правилу модуля 6 – x = ±a, выразим х:

Ответ: х = 6 ± a, где a ≥ 0.

Пример 2.

Решить уравнение a(х – 1) + 2(х – 1) = 0 относительно переменной х.

Решение.

Раскроем скобки: aх – а + 2х – 2 = 0

Запишем уравнение в стандартном виде: х(а + 2) = а + 2.

В случае, если выражение а + 2 не нуль, т. е. если а ≠ -2, имеем решение х = (а + 2) / (а + 2), т.е. х = 1.

В случае, если а + 2 равно нулю, т.е. а = -2, то имеем верное равенство 0 · x = 0, поэтому х – любое действительное число.

Ответ: х = 1 при а ≠ -2 и х € R при а = -2.

Пример 3.

Решить уравнение x/a + 1 = а + х относительно переменной х.

Решение.

Если а = 0, то преобразуем уравнение к виду а + х = а 2 + ах или (а – 1)х = -а(а – 1). Последнее уравнение при а = 1 имеет вид 0 · x = 0, следовательно, х – любое число.

Если а ≠ 1, то последнее уравнение примет вид х = -а.

Данное решение можно проиллюстрировать на координатной прямой (рис. 1)

Ответ: нет решений при а = 0; х – любое число при а = 1; х = -а при а ≠ 0 и а ≠ 1.

Графический метод

Рассмотрим еще один способ решения уравнений с параметром – графический. Этот метод применяется достаточно часто.

Пример 4.

Сколько корней в зависимости от параметра a имеет уравнение ||x| – 2| = a?

Решение.

Для решения графическим методом строим графики функций y = ||x| – 2| и y = a (рис. 2) .

На чертеже наглядно видны возможные случаи расположения прямой y = a и количество корней в каждом из них.

Ответ: корней у уравнения не будет, если а < 0; два корня будет в случае, если a > 2 и а = 0; три корня уравнение будет иметь в случае а = 2; четыре корня – при 0 < a < 2.

Пример 5.

При каком а уравнение 2|x| + |x – 1| = a имеет единственный корень?

Решение.

Изобразим графики функций y = 2|x| + |x – 1| и y = a. Для y = 2|x| + |x – 1|, раскрыв модули методом промежутков, получим:

{-3x + 1, при x < 0,

y = {x + 1, при 0 ≤ x ≤ 1,

{3x – 1, при x > 1.

На рисунке 3 хорошо видно, что единственный корень уравнение будет иметь только при а = 1.

Ответ: а = 1.

Пример 6.

Определить число решений уравнения |x + 1| + |x + 2| = a в зависимости от параметра а?

Решение.

График функции y = |x + 1| + |x + 2| будет представлять собой ломаную. Ее вершины будут располагаться в точках (-2; 1) и (-1; 1) (рисунок 4) .

Ответ: если параметр a будет меньше единицы, то корней у уравнения не будет; если а = 1, то решение уравнения является бесконечное множество чисел из отрезка [-2; -1]; если значения параметра а будут больше одного, то уравнение будет иметь два корня.

Остались вопросы? Не знаете, как решать уравнения с параметром?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

1. Системы линейных уравнений с параметром

Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод. Знание графической интерпретации линейных систем позволяет легко ответить на вопрос о количестве корней и их существовании.

Пример 1.

Найти все значения для параметра а, при которых система уравнений не имеет решений.

{х + (а 2 – 3)у = а,
{х + у = 2.

Решение.

Рассмотрим несколько способов решения данного задания.

1 способ . Используем свойство: система не имеет решений, если отношение коэффициентов перед х равно отношению коэффициентов перед у, но не равно отношению свободных членов (а/а 1 = b/b 1 ≠ c/c 1). Тогда имеем:

1/1 = (а 2 – 3)/1 ≠ а/2 или систему

{а 2 – 3 = 1,
{а ≠ 2.

Из первого уравнения а 2 = 4, поэтому с учетом условия, что а ≠ 2, получаем ответ.

Ответ: а = -2.

2 способ . Решаем методом подстановки.

{2 – у + (а 2 – 3)у = а,
{х = 2 – у,

{(а 2 – 3)у – у = а – 2,
{х = 2 – у.

После вынесения в первом уравнении общего множителя у за скобки, получим:

{(а 2 – 4)у = а – 2,
{х = 2 – у.

Система не имеет решений, если первое уравнение не будет иметь решений, то есть

{а 2 – 4 = 0,
{а – 2 ≠ 0.

Очевидно, что а = ±2, но с учетом второго условия в ответ идет только ответ с минусом.

Ответ: а = -2.

Пример 2.

Найти все значения для параметра а, при которых система уравнений имеет бесконечное множество решений.

{8х + ау = 2,
{ах + 2у = 1.

Решение.

По свойству, если отношение коэффициентов при х и у одинаковое, и равно отношению свободных членов системы, то она имеет бесконечное множество решений (т. е. а/а 1 = b/b 1 = c/c 1). Следовательно 8/а = а/2 = 2/1. Решая каждое из полученных уравнений находим, что а = 4 – ответ в данном примере.

Ответ: а = 4.

2. Системы рациональных уравнений с параметром

Пример 3.

{3|х| + у = 2,
{|х| + 2у = a.

Решение.

Умножим первое уравнение системы на 2:

{6|х| + 2у = 4,
{|х| + 2у = a.

Вычтем из первого второе уравнение, получим 5|х| = 4 – а. Это уравнение будет иметь единственное решение при а = 4. В других случаях это уравнение будет иметь два решения (при а < 4) или ни одного (при а > 4).

Ответ: а = 4.

Пример 4.

Найти все значения параметра а, при которых система уравнений имеет единственное решение.

{х + у = а,
{у – х 2 = 1.

Решение.

Данную систему решим с использованием графического метода. Так, графиком второго уравнения системы является парабола, поднятая по оси Оу вверх на один единичный отрезок. Первое уравнение задает множество прямых, параллельных прямой y = -x (рисунок 1) . Из рисунка хорошо видно, что система имеет решение, если прямая у = -х + а является касательной к параболе в точке с координатами (-0,5; 1,25). Подставив в уравнение прямой вместо х и у эти координаты, находим значение параметра а:

1,25 = 0,5 + а;

Ответ: а = 0,75.

Пример 5.

Используя метод подстановки, выясните, при каком значении параметра а, система имеет единственное решение.

{ах – у = а + 1,
{ах + (а + 2)у = 2.

Решение.

Из первого уравнения выразим у и подставим во второе:

{у = ах – а – 1,
{ах + (а + 2)(ах – а – 1) = 2.

Приведем второе уравнение к виду kx = b, которое будет иметь единственное решение при k ≠ 0. Имеем:

ах + а 2 х – а 2 – а + 2ах – 2а – 2 = 2;

а 2 х + 3ах = 2 + а 2 + 3а + 2.

Квадратный трехчлен а 2 + 3а + 2 представим в виде произведения скобок

(а + 2)(а + 1), а слева вынесем х за скобки:

(а 2 + 3а)х = 2 + (а + 2)(а + 1).

Очевидно, что а 2 + 3а не должно быть равным нулю, поэтому,

а 2 + 3а ≠ 0, а(а + 3) ≠ 0, а значит а ≠ 0 и ≠ -3.

Ответ: а ≠ 0; ≠ -3.

Пример 6.

Используя графический метод решения, определите, при каком значении параметра а, система имеет единственное решение.

{х 2 + у 2 = 9,
{у – |х| = а.

Решение.

Исходя из условия, строим окружность с центром в начале координат и радиусом 3 единичных отрезка, именно ее задает первое уравнение системы

х 2 + у 2 = 9. Второе уравнение системы (у = |х| + а) – ломаная. С помощью рисунка 2 рассматриваем все возможные случаи ее расположения относительно окружности. Легко видеть, что а = 3.

Ответ: а = 3.

Остались вопросы? Не знаете, как решать системы уравнений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Уравнение вида f (x ; a ) = 0 называется уравнением с переменной х и параметром а .

Решить уравнение с параметром а – это значит, для каждого значения а найти значения х , удовлетворяющие этому уравнению.

Пример 1. ах = 0

Пример 2. ах = а

Пример 3.

х + 2 = ах
х – ах = -2
х(1 – а) = -2

Если 1 – а = 0, т.е. а = 1, то х 0 = -2 корней нет

Если 1 – а 0, т.е. а 1, то х =

Пример 4.

(а 2 – 1) х = 2а 2 + а – 3
(а – 1)(а + 1)х = 2(а – 1)(а – 1,5)
(а – 1)(а + 1)х = (1а – 3)(а – 1)

Если а = 1, то 0х = 0
х – любое действительное число

Если а = -1, то 0х = -2
Корней нет

Если а 1, а -1, то х = (единственное решение).

Это значит, что каждому допустимому значению а соответствует единственное значение х .

Например:

если а = 5, то х = = ;

если а = 0, то х = 3 и т. д.

Дидактический материал

1. ах = х + 3

2. 4 + ах = 3х – 1

3. а = +

при а = 1 корней нет.

при а = 3 корней нет.

при а = 1 х – любое действительное число, кроме х = 1

при а = -1, а = 0 решений нет.

при а = 0, а = 2 решений нет.

при а = -3, а = 0, 5, а = -2 решений нет

при а = -с , с = 0 решений нет.

Квадратные уравнения с параметром

Пример 1. Решить уравнение

(а – 1)х 2 = 2(2а + 1)х + 4а + 3 = 0

При а = 1 6х + 7 = 0

В случае а 1 выделим те значения параметра, при которых Д обращается в нуль.

Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16

20а + 16 = 0

20а = -16

Если а < -4/5, то Д < 0, уравнение имеет действительный корень.

Если а > -4/5 и а 1, то Д > 0,

х =

Если а = 4/5, то Д = 0,

Пример 2. При каких значениях параметра а уравнение

х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?

Д = 4(а + 1) 2 – 4(9а – 5) = 4а 2 – 28а + 24 = 4(а – 1)(а – 6)

4(а – 1)(а – 6) > 0

по т. Виета: х 1 + х 2 = -2(а + 1)
х 1 х 2 = 9а – 5

По условию х 1 < 0, х 2 < 0 то –2(а + 1) < 0 и 9а – 5 > 0

В итоге 4(а – 1)(а – 6) > 0
- 2(а + 1) < 0
9а – 5 > 0
а < 1: а > 6
а > - 1
а > 5/9

(Рис. 1 )

< a < 1, либо a > 6

Пример 3. Найдите значения а , при которых данное уравнение имеет решение.

х 2 – 2(а – 1)х + 2а + 1 = 0

Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а

4а 2 – 16 0

4а (а – 4) 0

а(а – 4)) 0

а(а – 4) = 0

а = 0 или а – 4 = 0
а = 4

(Рис. 2 )

Ответ: а 0 и а 4

Дидактический материал

1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?

2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?

3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3а а 2) = 0 имеет более двух корней?

4. При каких значениях а уравнение 2х 2 + х а = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?

5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?

1. При а = - 1/7, а = 0, а = 1

2. При а = 0

3. При а = 2

4. При а = 10

5. При а = - 2

Показательные уравнения с параметром

Пример 1 .Найти все значения а , при которых уравнение

9 х – (а + 2)*3 х-1/х +2а *3 -2/х = 0 (1) имеет ровно два корня.

Решение. Умножив обе части уравнения (1) на 3 2/х, получим равносильное уравнение

3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)

Пусть 3 х+1/х = у , тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или

(у – 2)(у а ) = 0, откуда у 1 =2, у 2 = а .

Если у = 2, т.е. 3 х+1/х = 2 то х + 1/х = log 3 2 , или х 2 – х log 3 2 + 1 = 0.

Это уравнение не имеет действительных корней, так как его Д = log 2 3 2 – 4 < 0.

Если у = а , т.е. 3 х+1/х = а то х + 1/х = log 3 а , или х 2 – х log 3 а + 1 = 0. (3)

Уравнение (3) имеет ровно два корня тогда и только тогда, когда

Д = log 2 3 2 – 4 > 0, или |log 3 а| > 2.

Если log 3 а > 2, то а > 9, а если log 3 а < -2, то 0 < а < 1/9.

Ответ: 0 < а < 1/9, а > 9.

Пример 2 . При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?

Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t 2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х 1 = -3, х 2 = а = >

а – положительное число.

Ответ: при а > 0

Дидактический материал

1. Найти все значения а, при которых уравнение

25 х – (2а + 5)*5 х-1/х + 10а * 5 -2/х = 0 имеет ровно 2 решения.

2. При каких значениях а уравнение

2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?

3. При каких значениях параметра а уравнение

4 х - (5а -3)2 х +4а 2 – 3а = 0 имеет единственное решение?

Логарифмические уравнения с параметром

Пример 1. Найти все значения а , при которых уравнение

log 4x (1 + ах ) = 1/2 (1)

имеет единственное решение.

Решение. Уравнение (1) равносильно уравнению

1 + ах = 2х при х > 0, х 1/4 (3)

х = у

ау 2 –у + 1 = 0 (4)

Не выполняется (2) условие из (3).

Пусть а 0, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а 0, т.е. при а 1.Чтобы решить неравенство (3), построим графики функций Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение курса алгебры и математического анализа. – М.: Просвещение, 1990

  • Крамор В.С . Повторяем и систематизируем школьный курс алгебры и начал анализа. – М.: Просвещение, 1990.
  • Галицкий М.Л., Гольдман А.М., Звавич Л.И . Сборник задач по алгебре. – М.: Просвещение, 1994.
  • Звавич Л.И., Шляпочник Л.Я. Алгебра и начала анализа. Решение экзаменационных задач. – М.: Дрофа, 1998.
  • Макарычев Ю.Н. и др. Дидактические материалы по алгебре 7, 8, 9 кл. – М.: Просвещение, 2001.
  • Саакян С.И., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа для 10–11-х классов. – М.: Просвещение, 1990.
  • Журналы “Математика в школе”.
  • Л.С. Лаппо и др. ЕГЭ. Учебное пособие. – М.: Экзамен, 2001–2008.