Социология

Международный проект «Геном человека. Международный проект. Геном человека Презентация на тему

Слайд 2

План

Проект «Геном человека» Цели проекта История проекта Общебиологическое значение исследований, проведенных в рамках проекта Практическое приложение Проблемы и опасения Список используемой литературы

Слайд 3

ГЕНОМ ЧЕЛОВЕКА, международная программа, конечной целью которой является определение нуклеотидной последовательности (секвенирование) всей геномной ДНК человека, а также идентификация генов и их локализация в геноме (картирование).

Слайд 4

Цели проекта

Создания подробных карт генома; - клонирования перекрывающихся фрагментов генома, встроенных в искусственные дрожжевые хромосомы или другие большие векторы; - идентификации и характеристики всех генов; - определения нуклеотидной последовательности генома человека; - биологическая интерпретация информации, закодированной в ДНК.

Слайд 5

История проекта

1984 г. - зародилась исходная идея проекта; 1988 г. - Объединенный комитет, куда входили Министерство энергетики США и Национальные институты здоровья, представили обширный проект; 1990 г. - создана Международная организация по изучению генома человека «HUGO» (Human Genome Organisation); 6 апреля 2000 - заседание Комитета по науке Конгресса США; в феврале 2001 в выпусках «Science» и «Nature» были раздельно опубликованы результаты исследований «Celera» и HUGO. Джеймс Уотсон Крейг Вентер

Слайд 6

Общебиологическое значение исследований, проведенных в рамках проекта.

Исследования генома человека «потянули» за собой секвенирование геномов огромного числа других организмов, гораздо более простых. Первым крупным успехом стало полное картирование в 1995 генома бактерии Haemophilusinfluenzae, позже были полностью расшифрованы геномы более 20 бактерий, среди которых – возбудители туберкулеза, сыпного тифа, сифилиса и др. В 1996 картировали геном первой эукариотической клетки (клетки, содержащей оформленное ядро) – дрожжевой, а в 1998 впервые секвенировали геном многоклеточного организма – круглого червя Caenorhabolitselegans (нематоды). Завершена расшифровка генома первого насекомого – плодовой мушки дрозофилы и первого растения – арабидопсиса. У человека уже установлено строение двух самых маленьких хромосом – 21-й и 22-й. Все это создало основы для создания нового направления в биологии – сравнительной геномики.

Слайд 7

Весьма нтересным представляется вопрос о соотношении кодирующих и некодирующих областей в геноме. Как показывает компьютерный анализ, у C.elegans примерно равные доли – 27 и 26% соответственно – занимают в геноме экзоны (участки гена, в которых записана информация о структуре белка или РНК) и интроны (участки гена, не несущие подобной информации и вырезаемые при образовании зрелой РНК). Остальные 47% генома приходится на повторы, межгенные участки и т.д., т.е. на ДНК с неизвестными функциями.

Слайд 8

Еще один важный результат, имеющий общебиологическое (и практическое) значение – вариабельность генома.

Слайд 9

Практические приложения

Самые большие надежды ученые и общество возлагают на возможность применения результатов секвенирования генома человека для лечения генетических заболеваний. К настоящему времени в мире идентифицировано множество генов, ответственных за многие болезни человека, в том числе и такие серьезные, как болезнь Альцгеймера, муковисцидоз, мышечная дистрофия Дюшенна, хорея Гентингтона, наследственный рак молочной железы и яичников. Структуры этих генов полностью расшифрованы, а сами они клонированы.

Слайд 10

Еще одно важное применение результатов секвенирования – идентификация новых генов и выявление среди них тех, которые обусловливают предрасположенность к тем или иным заболеваниям. Широкое применение несомненно найдет и еще один феномен: обнаружилось, что разные аллели одного гена могут обусловливать разные реакции людей на лекарственные препараты. Важный практический аспект вариабельности генома – возможность идентификации личности.

Like Share 356 Views

Геном человека. ПРОГРАММА «ГЕНОМ ЧЕЛОВЕКА». Начата в 1998 году К 2000 году геном человека был прочтен с точностью в 10 раз ниже необходимой (не более 1 ошибки на 10 000 нуклеотидов).

Download Presentation

Геном человека

E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

    Начата в 1998 году К 2000 году геном человека был прочтен с точностью в 10 раз ниже необходимой (не более 1 ошибки на 10 000 нуклеотидов) Коммерческая фирма Селера выполнила проект за 9 месяцев 10 дней и сообщила об этом накануне конгресса в Ванкувере, где были представлены данные выполнения программы Международным сообществом ученых

    Нуклеотидов, собранных у человека в 25 томов – 22 аутосомы, Х- иY-хромосомы и М-хромосома В геноме человека 3,5 млрд пар нуклеотидов С-парадокс – у человека ДНК в геноме столько же, сколько у гороха и кукурузы, но в 5 раз меньше, чем у репчатого лука и в 20 раз меньше, чем у сосны Лягушки, жабы и тритоны – чемпионы по содержанию ДНК в геноме, у них ДНК приблизительно в 25 раз больше, чем у любого из видов млекопитающих

    У человека 10 в 14 степени клеток и 25 тыс генов Экономичность в использовании генов достигается альтернативным сплайсингом Пример- альтернативный сплайсинг в гене Bcl-x дает две формы белка. Bcl-xL запускает апоптоз, а Bcl-xS ингибирует

    31 780 генов по данным Международного проекта 39 114 генов по данным коммерческой орг. Селера 120 000 –Вильям Хозелтайм 140 000 фирма Инсайт Протеом человека содержит более 250 000 белков Геном сложных организмов содержит больше генов ферментов и белков, участвующих в посттрансляционной модификации белков

    Составляющие Конститутивный геном, - набор структурных генов, для разных систем универсальный. Это уникальные последовательности ДНК, в том числе фланкирующие структурные гены Факультативный – повторяющиеся последовательности, подвижные элементы, характеризующиеся непостоянством состава и положения

    Кодирующая часть ДНК – менее 10% Гены кодирующие белки – 2 % Гены кодирующие РНК – 20% Некодирующая ДНК – уникальные последовательности, фланкирующие структурные гены, повторяющиеся последовательности, транспозоны и ДНК, функция которой не идентифицирована, интроны Протеом человека составляет 250 000 белков Подготовлен список 923 генов, вызывающих моногенные наследственные заболевания или повышающих вероятность развития заболевания ДНК человека и шимпанзе идентичны на 99 %

    Ср. Длина гена 27000 п.н. Такой усредненный ген содержит 9 экзонов, 8 интронов по 3400п.н. Самые короткие гены содержат приблизительно 20 п.н. (гены эндорфинов) Самый большой ген – ген дистрофина – 2,4 млн п.н. Получается, что в кодировании принимает участие менее 1,5 % ДНК, т.е. 3 см из 2 м

    Последовательности в ДНК Общее число 5 млн, 50% генома Обращенные повторы или палиндромы (уж редко рукою окурок держу) Простые тандемные повторы – сателлиты, в геноме человека 6 видов таких повторов 42 п.н. – на 7 разных хромосомах 5 п.н. – на 4 разных хромосомах 5 п.н. – на 20 разных хромосомах 171 п.н. –α-сателлиты 68 п.н. –β-сателлиты 220 п.н. – γ-сателлиты Микросателлиты – 1.2.3. – повторы, занимающие 0,5 % генома

    Повторяются 50 – 400 раз Диспергированные повторы – постоянной прописки не имеют, могут менять положение LINE – дл. диспергированные повторы кодируют 2 белка, обеспечивающих перемещение Alu – короткие по 300 п.н. диспергированные повторы, в геноме их около 1 млн. Могут находиться в генах. Так, в гене 8 фактора при гемофилии есть Alu-повтор

    Гена, продукты которых похожи на белки бактерий. Предполагают, что это результат горизонтального переноса генов 1% человеческого генома представлен эндогенными ретровирусами Усложнение генома человека произошло не за счет увеличения числа генов, а за счет усложнения механизмов регуляции, альтернативного сплайсинга, редактирования РНК идр. Механизмов, приводящих к увеличению численности и разнообразия протеома

    МГЭ и умеренные повторы Сателлит-ная ДНК 1% 10% 20% 50% Гены – 90% Гены – 30% Экзоны – 1.5% Прокариота (E.coli) Эукариота (человек)

    HUMAN GENOME Ядерныйгеном ~3,000 Mb 25-30000 генов Митохондриальный геном 16.6 kb 37 генов 30% 70% Гены и родств последоват-ти меж- генная ДНК Двар-РНК гена 22 т-РНК гена 13 генов белков 70% 30% Уникальны или несколько копий 10% 90% Высоко повторенные Умеренно повторены Кодирующая ДНК Некодирующая ДНК Тандемные повторы и другие Генные фрагменты Псевдогены Интроны, регулят. сайты Мобильные элементы

    Экзоны – 1.5% Мобильные элементы > 50%

    Гены, имеющие общее происхождение и сходные, хотя не одинаковые функции. Часто располагаются кластерами, хотя могут быть рассеяны по геному. Кластер из 5 генов α-субъединицы в хромосоме 16 Интроны Экзоны Кластер из 7 генов β-субъединицы в хромосоме 11

    Число уже открытых псевдогенов ~ 20,000 Два типа – процессированные 70% непроцессированные 30% Процессированные псевдогены являются копией зрелой м-РНК гена – у них отсутствуют интроны и часто есть полиА-хвост Torrents et al. Genome Res. 2003 13: 2559-67.

    Мыши и человека

    Названия отражают их главное свойство – у них нет постоянной прописки в геноме – бродяга, цыган, Бигль, Магеллан, блоха, турист, Улисс и т.д. Транспозоны вездесущи – они есть у бактерий и у эукариот Перемещение транспозонов происходит 2 способами Путем вырезания с одного места и встраивания в другое Путем образования копии, которая внедряется на новое место. При этом мобильные элементы размножаются

    Группы Транспозоны ретротранспозоны 1-й способ перемещения 2-ой способ перемещения Для перемещения ретротранспозонов необходим фермент интеграза, разрезающий ДНК перед вставкой и элемент L1, в человеческом геноме он составляет 20% от всей ДНК Транспозоны могут содержать инсуляторы

    Транспозонов Инсерционный мутагенез – у дрозофилы 80% мутаций связано с перемещением моб. Элементов Изменение экспрессии генов за счет наличия в транспозонах регулирующих элементов 3. Хромосомные аберрации (инверсии, делеции) 4. Могут изменить границы гена, внедряясь в петлю ДНК и имитируя эффект инсулятора

    Обычных генов 1948 – Барбара МакКлинток, МЭ у кукурузы 1976 – Г.П. Георгиев, Д. Хогнесс, МЭ у дрозофилы представлены в геноме одной копией Гены имеют постоянное место в определенной хромосоме число копий у разных особей – разное, от 0 до десятков и сотен Мобильные элементы могут менять свое место, перемещаясь в новые локусы той же хромосомы или других

    Слюнных желез линийUc-1и flr3Drosophila melanogaster flr3 Uc1-66-#5 Л.П. Захаренко

Подобные документы

    Ознакомление с основной задачей программы "Геном человека" - созданием генетической и физической карт генома человека, которые должны стать основой расшифровки точной последовательности четырех нуклеотидов всех гигантских молекул ДНК, образующих геном.

    курсовая работа, добавлен 20.05.2014

    Понятие генома человека как совокупности наследственного материала, заключенного в клетке человека. Особенности строения ДНК. Завершение работ по расшифровке генома человека консорциумом ученых. Новый метод чтения генетических последовательностей.

    презентация, добавлен 14.12.2016

    Биология нуклеиновых кислот, строение нуклеотидов. ДНК и ее роль в передаче наследственных признаков. Расшифровка генома человека. Его функционирование регулируется различными транскрипционными факторами – специальными белками. Полиморфизмом в генетике.

    реферат, добавлен 25.02.2011

    Изучение истории возникновения генетики, как науки. Определение биохимиками химической природы нуклеиновых кислот, которые управляют биосинтезом клеточных белков. Открытие дезоксирибонуклеиновой кислоты. "Молекулярная биология гена" Джеймса Уотсона.

    реферат, добавлен 30.06.2011

    Значение программы изучения генома человека для практической медицины. Гены, контролирующие синтез специфических белков. Кодирующие белки и РНК. Процесс построения матричной РНК по участку молекулы ДНК. Защитные механизмы концевой недорепликации.

    доклад, добавлен 05.05.2015

    Определение понятия геном человека. Сущность, цели и основные вехи международного проекта "Геном человека". Строение генов человека, их количества, характеристика типов карт хромосом. Определение числа хромосом, их длинны у разных биологических видов.

    реферат, добавлен 21.03.2017

    Геномика - ключевое слово новой биологии. Основные достижения и гипотезы ХХ века о природе и строении генома человека - стартовая площадка биологии XXI века. Исследования генома человека и других организмов. Вероятность происхождения человека от приматов.

    статья, добавлен 04.09.2010

    Понятие и сущность генетики как науки. История ее открытия австрийским монахом Г. Менделем, становление и развитие науки. Характеристика теории наследственности и строение генома человека. Прогнозы и планирование учёных в развитии и изучении генов.

    реферат, добавлен 11.11.2016

    Проект по расшифровке генома человека - международная научно-исследовательская задача, главной целью которой было определить последовательность нуклеотидов, которые составляют ДНК и идентифицировать гены в человеческом геноме: предпосылки и перспективы.

    реферат, добавлен 26.11.2010

    Понятие генома как совокупности наследственной информации организма. Структура человеческих генов. Исследования генома человека, место антропологии и палеогенетики в изучении антропогенеза. Изучение ДНК неандертальцев. Взаимосвязь гонов и здоровья.

Содержание Введение.......................................................................3 1. "Геном человека". Вехи проекта......................................4 2. Карты хромосом. Подходы к их составлению.......................6 3. Разработка новых технологий.........................................9 4. Результаты. Задачи на будущее.....................................10 Заключение..................................................................15 Список литературы........................................................16 Введение. Международный проект "Геном человека" был начат в 1988 г. под руководством Джеймса Уотсона под эгидой Национальной организации здравоохранения США. Это один из самых трудоемких и дорогостоящих проектов в истории науки. Если в 1990 г. на него было потрачено около 60 млн долларов в целом, то в 1998 г. одно только правительство США израсходовало 253 млн долларов, а частные компании - и того больше. В проекте задействованы несколько тысяч ученых более чем из 20 стран. С 1989 г. в нем участвует и Россия, где по проекту работает около 100 групп. Все хромосомы человека поделены между странами-участницами, и России для исследования достались 3-, 13- и 19-я хромосомы. Цель проекта заключается в выяснении последовательности оснований во всех молекулах ДНК в клетках человека. Одновременно должна быть установлена локализация всех генов, что помогло бы выяснить причины наследственных заболеваний и этим открыть пути к их лечению. В выполнении проекта задействовано несколько тысяч ученых, специализирующихся в биологии, химии, математике, физике и технике. В 2000 году был выпущен рабочий черновик структуры генома, полный геном - в 2003, однако и сегодня дополнительный анализ некоторых участков ещё не закончен. Кроме очевидной фундаментальной значимости, определение структуры человеческих генов является важным шагом для разработки новых медикаментов и развития других аспектов здравоохранения. Хотя целью проекта по расшифровке генома человека является понимание строения генома человеческого вида, проект также фокусировался и на нескольких других организмах, среди которых бактерии, в частности, Escherichia coli, насекомые, такие как мушка дрозофила, и млекопитающие, например, мышь. 1. "Геном человека". Вехи проекта. В любой соматической клетке человека 23 пары хромосом. В каждой из них по одной молекуле ДНК. Длина всех 46 молекул почти 2 м. У взрослого человека примерно 5х1013 клеток, так что общая длина молекул ДНК в организме 1011 км (почти в тысячу раз больше расстояния от Земли до Солнца). В молекулах ДНК одной клетки человека 3,2 млрд.пар нуклеотидов. Каждый нуклеотид состоит из углевода, фосфата и азотистого основания. Углеводы и фосфаты одинаковы во всех нуклеотидах, а азотистых оснований - четыре. Таким образом, язык генетических записей четырехбуквенный, и если основание - его "буква", то "слова" - это порядок аминокислот в кодируемых генами белках. Кроме состава белков в геноме (совокупности генов в одинарном наборе хромосом) записаны и другие любопытные сведения. Можно сказать, что Природа (в результате эволюции или Божьего промысла) закодировала в ДНК инструкции о том, как клеткам выживать, реагировать на внешние воздействия, предотвращать "поломки", иными словами, - как развиваться и стареть организму. Любое нарушение этих инструкций ведет к мутациям, и если они случаются в половых клетках (сперматозоидах или яйцеклетках), мутации передаются следующим поколениям, угрожая существованию данного вида. Как представить себе 3 млрд. оснований зримо? Чтобы воспроизвести информацию, содержащуюся в ДНК единственной клетки, даже самым мелким шрифтом (как в телефонных справочниках), понадобится тысяча 1000-страничных книг! Сколько же всего генов, то есть последовательностей нуклеотидов, кодирующих белки, в ДНК человека? Еще в 1996 г. считалось, что у человека около 100 тыс. генов, сейчас специалисты по биоинформатике предполагают, что в геноме человека не более 40 тыс. генов, причем на их долю приходится всего 3% общей длины ДНК клетки, а функциональная роль остальных 97% пока не установлена. Цель проекта - выяснить последовательности азотистых оснований и положения генов (картирование) в каждой молекуле ДНК каждой клетки человека, что открыло бы причины наследственных заболеваний и пути к их лечению. В проекте заняты тысячи специалистов со всего мира: биологов, химиков, математиков, физиков и техников. Проект состоит из пяти основных этапов: * составление карты, на которой помечены гены, отстоящие друг от друга не более, чем на 2 млн. оснований, на языке специалистов, с разрешением 2 Мб (Мегабаза - от английского слова "base" - основание); * завершение физических карт каждой хромосомы с разрешением 0,1 Мб; * получение карты всего генома в виде набора описанных по отдельности клонов (0,005 Мб); * к 2004 г. полное секвенирование ДНК (разрешение 1 основание); * нанесение на карту с разрешением в 1 основание всех генов человека (к 2005 г.). Когда эти этапы будут завершены, исследователи определят все функции генов, а также биологические и медицинские применения результатов. 2. Карты хромосом. Подходы к их составлению. В ходе проекта создают три типа карт хромосом: генетические, физические и секвенсовые (от англ. sequence - последовательность). Выявить все гены, присутствующие в геноме, и установить расстояния между ними - значит локализовать каждый ген в хромосомах. Такие генетические карты помимо инвентаризации генов и указания их положений ответят на исключительно важный вопрос о том, как гены определяют те или иные признаки организма. Ведь многие признаки зависят от нескольких генов, часто расположенных в разных хромосомах, и знание положения каждого из них позволит понять, как происходит дифференцировка (специализация) клеток, органов и тканей, а также успешнее лечить генетические заболевания. В 20-е и 30-е годы, когда создавалась хромосомная теория наследственности, выяснение положения каждого гена привело к тому, что на генетических картах сначала дрозофилы, а затем кукурузы и ряда других видов удалось отметить особые точки, как тогда говорили, "генетические маркеры" хромосом. Анализ их положения в хромосомах помог снабдить генетические карты хромосом человека новыми сведениями. Первые данные о положении отдельных генов появились еще в 60-е годы. С тех пор они множились лавинообразно, и в настоящее время известно положение уже десятков тысяч генов. Три года назад разрешение генетической карты составляло 10 Мб (для некоторых участков - даже 5 Мб). Другое направление исследований - составление физических карт хромосом. Еще в 60-е годы цитогенетики стали окрашивать хромосомы, чтобы выявить на них особые поперечные полосы. После окрашивания полосы было видно в микроскоп. Между полосами и генами удалось установить соответствие, что позволило изучать хромосомы по-новому. Позже научились "метить" молекулы ДНК (радиоактивными или флуоресцентными метками) и следить за присоединением этих меток к хромосомам, что значительно повысило разрешение их структуры: до 2 Мб, а потом и до 0,1 Мб (при делении клеток). В 70-е годы научились "разрезать" ДНК на участки специальными (рестрикционными) ферментами, распознающими короткие отрезки ДНК, в которых информация записана в виде палиндромов - сочетаний, читаемых одинаково от начала к концу и от конца к началу. Так возникли рестрикционные карты хромосом. Использование современных физических и химических методов и средств улучшило разрешение физических карт в сотни раз. Наконец, разработка методов секвенирования (изучения точных последовательностей нуклеотидов в ДНК) открыла путь к созданию секвенсовых карт с рекордным на сегодня разрешением (на этих картах будет указано положение всех нуклеотидов в ДНК). Число хромосом и их длина различны у разных биологических видов. В клетках бактерий всего одна хромосома. Так, размер генома бактерии Mycoplasma genita-lium 0,58 Мб (в нем 470 генов), у бактерии кишечной палочки (Escherichia coli) в геноме 4200 генов (4,2 Мб), у растения Arabi- dopsis thaliana - 25 тыс. генов (100 Мб), у плодовой мушки Droso-phila melanogaster - 10 тыс. генов (120 Мб). В ДНК мыши и человека 50-60 тыс. генов (3000 Мб). Конечно, для составления карт столь разных объектов одни и те же методы неприменимы, поэтому используют два разных по методологии подхода: * в первом делят ДНК на небольшие куски и, изучив их по отдельности, воссоздают всю структуру, Этот подход увенчался успехом при составлении сравнительно простых карт; * для более сложных геномов эффективнее второй подход. В этих случаях неразумно делить молекулу ДНК на короткие куски, удобные для детального изучения. Их оказалось бы так много, что путаница в последовательностях была бы неразрешимой. Поэтому, принимаясь за расшифровку, молекулу делят, наоборот, на как можно более длинные куски и сравнивают их в надежде найти общие концевые участки. Если это удается, куски объединяют, после чего процедуру повторяют. С совершенствованием компьютеров и математических методов обработки информации объединенные по такому принципу куски становятся все крупнее, постепенно приближаясь к целой молекуле. Этот подход, в частности, позволил составить генетическую карту 3-й хромосомы дрозофилы. 3. Разработка новых технологий. Важный аспект проекта "Геном человека" - разработка новых методов исследований. Еще до старта проекта был развит ряд весьма эффективных методов цитогенетических исследований (теперь их называют методами первого поколения). Среди них: создание и применение упомянутых рестрикционных ферментов; получение гибридных молекул, их клонирование и перенос участков ДНК с помощью векторов в клетки-доноры (чаще всего - кишечной палочки или дрожжей); синтез ДНК на матрицах информационной РНК; секвенирование генов; копирование генов с помощью специальных устройств; способы анализа и классификации молекул ДНК по плотности, массе, структуре. В последние 4-5 лет благодаря проекту "Геном человека" разработаны новые методы (методы второго поколения), в которых почти все процессы полностью автоматизированы. Почему это направление стало центральным? Самая маленькая хромосома клеток человека содержит ДНК длиной 50 Мб, самая большая (хромосома 1) - 250 Мб. До 1996 г. наибольший участок ДНК, выделяемый из хромосом с помощью реактивов, имел длину 0,35 Мб, а на лучшем оборудовании их структура расшифровывалась со скоростью 0,05-0,1 Мб в год при стоимости 1-2 долл. за основание. Иными словами, только на эту работу понадобилось бы примерно 30 тыс. дней (почти век) и 3 млрд. долл. Совершенствование технологии к 1998 г. повысило производительность до 0,1 Мб в день (36,5 Мб в год) и понизило стоимость до 0,5 долл. за основание. Использование новых электромеханических устройств, которые к тому же потребляют меньше реактивов, позволило уже в 1999 г. ускорить работы еще в 5 раз (к 2003 г. скорость расшифровки до 500 Мб в год) и уменьшить стоимость до 0,25 долл. за основание (для человеческой ДНК еще дешевле). 4. Результаты. Задачи на будущее. За последние шесть лет созданы международные банки данных о последовательностях нуклеотидов в ДНК разных организмов (GenBank / EMBL / pBJ) и о последовательностях аминокислот в белках (PIR / SwissPot). Любой специалист может воспользоваться собранной там информацией в исследовательских целях. Решение о свободном доступе к информации далось нелегко. Ученые, юристы, законодатели немало потрудились, чтобы воспрепятствовать намерениям коммерческих фирм патентовать все результаты проекта и превратить эту область науки в бизнес. Расшифрованные геномы. 1995 г. - бактерия Hemophilus influenza;. 1996 г. - клетка дрожжей (6 тыс. генов, 12,5 Мб); 1998 г. - круглый червь Caenorhabditis elegans (19 тыс. генов, 97 Мб). Основные результаты завершенных этапов проекта изложены в журнале "Science" (1998. Vol. 282, № 5396,. Р. 2012-2042). Изученные гены человека. За 1995 г. длина участков ДНК человека с установленной последовательностью оснований увеличилась почти в 10 раз. Но хотя прогресс был налицо, результат за год составил менее 0,001% от того, что предстояло сделать. Но уже к июлю 1998 г. было расшифровано почти 9% генома, а затем каждый месяц появлялись новые значительные результаты. Изучив большое число копий генов в виде сДНК и сопоставив их последовательности с участками хромосомной ДНК, к ноябрю 1998 г. расшифровали 30 261 ген (примерно половина генома). Функции генов. Результаты завершенной части проекта позволяют судить о роли двух третей генов в образовании и функционировании органов и тканей человеческого организма. Оказалось, что больше всего генов нужно для формирования мозга и поддержания его активности, а меньше всего для создания эритроцитов - лишь 8. Полученные данные позволили впервые реально оценить функции генов в организме человека. В мире каждый сотый ребенок рождается с каким-либо наследственным дефектом. К настоящему времени известно около 10 тыс. различных заболеваний человека, из которых более 3 тыс. - наследственные. Уже выявлены мутации, отвечающие за такие заболевания, как гипертония, диабет, некоторые виды слепоты и глухоты, злокачественные опухоли. Обнаружены гены, ответственные за одну из форм эпилепсии, гигантизм и др. Вот некоторые болезни, возникающие в результате повреждения генов, структура которых полностью расшифрована: * Хронический грануломатоз; * Кистозный фиброз; * Болезнь Вильсона; * Ранний рак груди/яичника; * Мышечная дистрофия Эмери-Дрейфуса; * Атрофия мышц позвоночника; * Альбинизм глаза; * Болезнь Альцгеймера; * Наследственный паралич; * Дистония. Другие организмы. Когда составлялась программа исследований по проекту, решили сначала отработать методы на более простых моделях. Поэтому на первом этапе реализации проекта изучили 8 разных представителей мира микроорганизмов, а к концу 1998 г. - уже 18 организмов с размерами генома от 1 до 20 Мб. В их числе представители многих родов бактерий: архебактерии, спирохеты, хламидобактерии, кишечная палочка, возбудители пневмоний, сифилиса, гемофилии, метанобразующие бактерии, микоплазмы, риккетсии, цианобактерии. Как уже упоминалось, завершен генетический анализ одноклеточного эукариота - дрожжей Saccharomy-ces cerevisae и первого многоклеточного животного - червя C. elegans. Повреждения генов и наследственные болезни. Из 10 тыс. известных заболеваний человека около 3 тыс. - наследственные болезни. Они необязательно наследуются (передаются потомкам). Просто вызваны они нарушениями наследственного аппарата, то есть генов (в том числе в соматических клетках, а не только в половых). Выявление молекулярных причин "поломки" генов - важнейший результат проекта. Число изученных болезнетворных генов быстро растет, и через 3-4 года мы познаем все 3 тыс. генов, ответственных за те или иные патологии. Это поможет разобраться в генетических программах развития и функционирования человеческого организма, в частности, понять причины рака и старения. Знание молекулярных основ заболеваний поможет их ранней диагностике, а значит, и более успешному лечению. Адресное снабжение лекарствами пораженных клеток, замена больных генов здоровыми, управление обменом веществ и многие другие мечты фантастов на наших глазах превращаются в реальные методы современной медицины. Молекулярные механизмы эволюции. Зная строение геномов, ученые приблизятся к разгадке механизмов эволюции. В частности, такого ее этапа, как деление живых существ на прокариоты и эукариоты. До последнего времени к прокариотам относили архебактерии, по многим признакам отличающиеся от других представителей этой группы микроорганизмов, но также состоящие всего из одной клетки без обособленного ядра, но с молекулой ДНК в виде двойной спирали. Когда год назад геном архебактерий расшифровали, стало ясно, что это отдельная ветвь на эволюционном древе. Значительный прогресс достигнут в практической области создания новых продуктов для медицинской промышленности и лечения болезней человека. В настоящее время фармацевтическая промышленность завоевала лидирующие позиции в мире, что нашло отражение не только в объемах промышленного производства, но и в финансовых средствах, вкладываемых в эту промышленность (по оценкам экономистов, она вошла в лидирующую группу по объему купли-продажи акций на рынках ценных бумаг). Важной новинкой стало и то, что фармацевтические компании включили в свою сферу выведение новых сортов сельскохозяйственных растений и животных и тратят на это десятки миллиардов долларов в год, они же монополизировали выпуск химических веществ для быта, добавок к продукции строительной индустрии и т.п. Уже не десятки тысяч, а возможно, несколько сот тысяч высококвалифицированных специалистов заняты в исследовательских и промышленных секторах фарминдустрии, и именно в этих областях интерес к геномным и генно-инженерным исследованиям исключительно высок. С учетом постоянного наращивания темпов работ руководители проекта заявили в конце 1998 г., что проект будет выполнен гораздо раньше, чем планировалось, и сформулировали задачи на ближайшую перспективу: 2001 г. - предварительный анализ генома человека; 2002 г. - расшифровка генома плодовой мухи Drosophila melanogaster; 2003 г. - создание полных карт генома человека; 2005 г. - расшифровка генома мыши с использованием методов сДНК и искусственных хромосом дрожжей. Помимо этих целей, официально включенных в международный проект, поддерживаемый США и рядом других стран на правительственном уровне, некоторые исследовательские центры объявили о задачах, которые будут решаться в основном за счет грантов и пожертвований. Так, ученые Калифорнийского университета (Беркли), Орегонского университета и Центра Ф. Хатчинсона по исследованию рака начали расшифровку генома собаки. Главная стратегическая задача на будущее - изучить вариации ДНК (на уровне отдельных нуклеотидов) в разных органах и клетках отдельных индивидуумов и выявить эти различия. Обычно одиночные мутации в ДНК человека встречаются в среднем на тысячу неизмененных оснований. Анализ таких вариаций позволит не только создавать индивидуальные генные портреты и, тем самым, лечить любые болезни, но и определять различия между популяциями и регионы повышенного риска, делать заключения о необходимости первоочередной очистки территорий от тех или иных загрязнений и выявлять производства, опасные для геномов персонала. Впрочем, наряду с радужными ожиданиями всеобщего блага эта грандиозная цель вызывает и вполне осознанную тревогу юристов и борцов за права человека. В частности, высказываются возражения против распространения генетической информации без разрешения тех, кого она касается. Ведь ни для кого не секрет, что уже сегодня страховые компании стремятся добыть такие сведения всеми правдами и неправдами, намереваясь использовать эти данные против тех, кого они страхуют. Компании не желают страховать клиентов с потенциально болезнетворными генами или заламывают за их страховки бешеные суммы. Поэтому конгресс США уже принял ряд законов, направленных на строгий запрет распространения индивидуальной генетической информации. Какие прогнозы сбудутся: оптимистические или пессимистические - покажет ближайшее будущее... Заключение. Почти все цели, которые ставил перед собой проект, были достигнуты быстрее, чем предполагалось. Проект по расшифровке генома человека был закончен на два года раньше, чем планировалось. Проект поставил разумную, достижимую цель секвенирования 95 % ДНК. Исследователи не только достигли её, но и превзошли собственные предсказания, и смогли секвенировать 99,99 % человеческой ДНК. Проект не только превзошёл все цели и выработанные ранее стандарты, но и продолжает улучшать уже достигнутые результаты. Список литературы 1. Карсон Р., Батчер Дж., Минека С. Анормальная психология. - 11-е изд. - СПб: Питер, 2004. - 1167с.: ил. - (Серия "Мастера психологии"). 2. Кнорре Д.Г. Биохимия нуклеиновых кислот // Соросовский образовательный журнал. 1996г. № 3 стр. 10-11, 1998г. № 8 стр. 30-35. 3. Секач М.Ф. Психология здоровья: учебное пособие для высшей школы. - 2-е изд. - М.: Академический проект: Гаудеамус, 2005. - 192с. - ("Gaudeamus").