Производство

Прямолинейное движение. Школьная энциклопедия Представление о равномерном движении

Равномерное движение - механическое движение, при котором тело за любые равные промежутки времени проходит одно и то же расстояние.(v=const)Равномерное движение материальной точки - это движение, при котором величина скорости точки остаётся неизменной. Расстояние, пройденное точкой за время t {\displaystyle t} , задаётся в этом случае формулой l = v t {\displaystyle l=vt} .

Виды равномерного движения

Равномерное движение по окружности - это простейший пример криволинейного движения.

При равномерном движении точки по окружности её траекторией является дуга. Точка движется с постоянной угловой скоростью ω {\displaystyle \omega } , а зависимость угла поворота точки от времени является линейной:

φ = φ 0 + ω t {\displaystyle \varphi =\varphi _{0}+\omega t} ,

где φ 0 {\displaystyle \varphi _{0}} - начальное значение угла поворота.

Эта же формула определяет угол поворота абсолютно твёрдого тела при его равномерном вращении вокруг неподвижной оси, то есть при вращении с постоянной угловой скоростью ω → {\displaystyle {\vec {\omega }}} .

Важной характеристикой данного типа движения является линейная скорость материальной точки v → {\displaystyle {\vec {v}}}

Нужно помнить, что равномерное движение по окружности - движение равноускоренное. Хотя модуль линейной скорости и не меняется, но меняется направление вектора линейной скорости (из-за нормального ускорения).

Литература

Ссылки

Воспроизвести медиафайл Равномерное и неравномерное движение

1.1.3 Кинематика прямолинейного движения

Равномерное прямолинейное движение. Равномерным прямолинейным называют такое движение, которое происходит по прямолинейной траектории, и когда за любые равные промежутки времени тело совершает одинаковые перемещения. Скоростью равномерного прямолинейного движения называют векторную величину, равную отношению перемещения тела к промежутку времени, в течение которого было совершено это перемещение: v = r / t

Направление скорости в прямолинейном движении совпадает с направлением перемещения, поэтому модуль перемещения равняется пути движения: /r / = S. Поскольку в равномерном прямолинейном движении за любые равные промежутки времени тело совершает равные перемещения, скорость такого движения является величиной постоянной (v = const):

Это движение можно графически отобразить в разных координатах. В системе v (t ), равномерное прямолинейное движение скорость будет представлять собой прямую, параллельную оси абсцисс, а путь – площадь четырехугольника со сторонами равными величине постоянной скорости и времени, в течение которой происходило движение (рисунок - 1.8). В координатах S (t ), путь отражается наклонной прямой, а о скорости можно судить по тангенсу угла наклона этой прямой (рисунок - 1.9) Пусть ось Ох системы координат, связанный с телом отсчета, совпадает с прямой, вдоль которой движется тело, а x 0 является координатой начальной точки движения тела.

Рисунок - 1.7

Рисунок - 1.8

Вдоль оси Ох направлены и перемещение S, и скорость v движущегося тела. Теперь можно установить кинематический закон равномерного прямолинейного движения, т. е. найти выражение для координаты движущегося тела в любой момент времени.

x = x 0 + v x t

По этой формуле, зная координату х 0 начальной точки движения тела и скорость тела v (ее проекцию v x на ось Ох), в любой момент времени можно определить положение движущегося тела. Правая часть формулы является алгебраической суммой, так как и х 0 , и v x могут быть и положительными, и отрицательными (ее графическое представление дано на рисунке- 1.10).

Рисунок - 1.9

Рисунок - 1.10

Прямолинейное движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково, называют равнопеременным прямолинейным движением. Быстроту изменения скорости характеризуют величиной, обозначаемой а и называемой ускорением . Ускорением называют векторную величину, равную отношению изменения скорости тела (v - v 0 ) к промежутку времениt , в течение которого это изменение произошло:a =(v - v 0 )/ t . Здесь v 0 - начальная скорость тела, v - мгновенная скорость тела в рассматриваемый момент времени.

Прямолинейное равнопеременное движение есть движение с постоянным ускорением (a = const). В прямолинейном равноускоренном движении векторы v 0 , v и а направлены по одной прямой. Поэтому модули их проекций на эту прямую равны модулям самих этих векторов.

Найдем кинематический закон прямолинейного равноускоренного движения. После преобразования получим уравнение скорости равноускоренного движения:

Если первоначально тело покоилось (v0 ==0) ,

v =√ 2а S

Графики скорости прямолинейного равноускоренного движения изображены на рисунке – 1.11. На этом рисунке графики 1 и 2 соответствуют движению с положительной проекцией ускорения на ось Ох (скорость увеличивается), а график 3 соответствует движению с отрицательной проекцией ускорения (скорость уменьшается). График 2 соответствует движению без начальной скорости, а графики 1 и 3 - движению с начальной скоростью v 0x . Угол наклона графика к оси абсцисс зависит от ускорения движения тела. Для построения зависимости координаты от времени (график движения) на оси абсцисс откладывают время движения, а на оси ординат - координату движущегося тела.

Пусть тело движется равноускоренно в положительном направлении Ох выбранной системы координат. Тогда уравнение движения тела имеет вид:

х = х 0 + v ox t

Графиком этой зависимости является парабола, ветви которой направлены вверх, если а >0, или вниз, если а

Рисунок - 1.11

Равномерное движение. Формула равномерного движения.

Знакомство с классическим курсом физики начинается с простейших законов, которым подчиняются тела, перемещающиеся в пространстве. Прямолинейное равномерное движение – самый простой вид изменения положения тела в пространстве. Такое движение изучается в разделе кинематики.

Противник Аристотеля

Галилео Галилей остался в анналах истории как один из величайших естествоиспытателей времен позднего Ренессанса. Он отважился проверять утверждения Аристотеля – неслыханная по тем временам ересь, ибо учение этого древнего мудреца всячески поддерживалось церковью. Идея равномерного движения тогда не рассматривалась – тело или двигалось «вообще», или находилось в состоянии покоя. Понадобились многочисленные эксперименты для того, чтобы объяснить природу движения.

Опыты Галилея

Классическим примером изучения движения стал известный эксперимент Галилея, когда он бросал различные тяжести со знаменитой Пизанской башни. В результате этого эксперимента выяснилось, что тела, имеющие разные массы, падают с одинаковой скоростью. Позднее эксперимент был продолжен в горизонтальной плоскости. Галилей предложил, что любой шар при отсутствии трения будет катиться с горки сколь угодно долго, при этом скорость его так же будет постоянной. Так, экспериментальным путем, Галилео Галилей открыл сущность первого закона Ньютона – при отсутствии внешних сил тело движется по прямой с постоянной скоростью. Прямолинейное равномерное движение – это и есть выражение первого закона Ньютона. В настоящее время различными видами движения занимается особый раздел физики - кинематика. В переводе с греческого данное наименование означает - учение о движении.

Новая система координат

Анализ равномерного движения был бы невозможен без создания нового принципа определения положения тел в пространстве. Сейчас мы называем его прямолинейной системой координат. Автор ее - известный философ и математик Рене Декарт, благодаря которому мы и называем систему координат декартовой. В таком виде очень удобно представлять траекторию движения тела в трехмерном пространстве и анализировать такое перемещения, привязывая положение тела к координатным осям. Прямоугольная система координат представляет собой две пересекающиеся под прямым углом прямые. Точка пересечения обычно принимается за начало отсчета измерений. Горизонтальная линия называется абсциссой, вертикальная – ординатой. Поскольку мы живем в трехмерном пространстве, к плоскостной системе координат добавляют и третью ось – ее называют аппликатой.

Определение скорости

Скорость невозможно измерить так, как мы измеряем расстояние и время. Это всегда величина производная, которая и записывается в виде соотношения. В самом общем виде скорость тела равна отношению пройденного расстояния к затраченному времени. Формула для скорости имеет вид:

Где d- пройденное расстояние, t - затраченное время.

Направление напрямую влияет на векторное обозначение скорости (величина, определяющая время – скаляр, то есть оно направления не имеет).

Представление о равномерном движении

При равномерном движении тело движется вдоль прямой с постоянной скоростью. Поскольку скорость – это векторная величина, ее свойства описываются не только числом, но и направлением. Поэтому лучше уточнить определение, и сказать, что скорость равномерного прямолинейного движения постоянна по модулю и направлению. Чтобы описать прямолинейное равномерное движение, достаточно использовать декартову систему координат. В этом случае ось ОХ будет удобно проложить по направлению движения.

При равномерном перемещении положение тела в любой период времени определяется всего одной координатой - x. Направление движения тела и вектор скорости направлены вдоль оси х, при этом начало движения можно отсчитывать от нулевой отметки. Поэтому анализ перемещения тела в пространстве можно свести к проекции траектории движения на ось ОХ и описывать процесс алгебраическими уравнениями.

Равномерное движение с точки зрения алгебры

Допустим, что в определенный момент времени t 1 тело находится в точке на оси абсцисс, координата которой равна х 1 . Черед некоторой промежуток времени тело изменит свое местоположение. Теперь координата его нахождения в пространстве будет равняться х 2 . Сведя рассмотрение движения тела к его расположению на оси координат, можно определить, что путь, который прошло тело, равен разнице начальной и конечной координаты. Алгебраически это записывается так: Δs = x 2 – x 1.

Величина перемещения

Величина, определяющая перемещение тела, может быть и больше, и меньше 0. Все зависит от того, в какую сторону относительно направления оси перемещалось тело. В физике можно записывать и отрицательное, и положительное перемещение – все зависит от выбранной для отсчета системы координат. Прямолинейное равномерное движение происходит со скоростью, которая описывается формулой:

При этом скорость будет больше нуля, если тело движется вдоль оси ОХ от нуля; меньше нуля – если движение идет справа налево по оси абсцисс.

Такая краткая запись отражает суть равномерного прямолинейного движения – какими бы ни были изменения координат, скорость перемещения остается неизменной.

Галилею мы обязаны еще одной гениальной мыслью. Анализируя движение тела в мире, лишенном трения, ученый настаивал на том, что силы и скорости не зависят друг от друга. Эта блестящая догадка нашла свое отражение во всех существующих законах движения. Так, силы, действующие на тело, не зависят друг от друга и действуют так, будто других не существует. Применяя это правило к анализу движения тела, Галилей понял, что всю механику процесса можно разложить на силы, которые складываются геометрически (векторно) или линейно, если действуют в одном направлении. Приблизительно это будет выглядеть так:

При чем же здесь равномерное движение? Все очень просто. На очень малых промежутках пути скорость движения тела вполне можно считать равномерной, с прямолинейной траекторией. Таким образом, возникла блестящая возможность изучить более сложные движения, сводя их к простым. Так изучалось равномерное движение тела по окружности.

Равномерное движение по окружности

Равномерное и равноускоренное движение можно наблюдать в перемещении планет по своим орбитам. В этом случае планета участвует в двух видах независимых движений: она равномерно перемещается по окружности и в тоже время равноускоренно движется к Солнцу. Такое сложное движение объясняется силами, действующими на планеты. Схема воздействия планетарных сил представлена на рисунке:

Как можно видеть, планета участвует в двух разных движениях. Геометрическое сложение скоростей и даст нам скорость планеты на данном отрезке пути.

Равномерное движение – основа для дальнейшего изучения кинематики и физики в целом. Это элементарный процесс, к которому можно свести гораздо более сложные перемещения. Но в физике, как и везде, великое начинается с малого, и запуская в безвоздушное пространство космические корабли, управляя подводными лодками, следует не забывать о тех простейших опытах, на которых Галилей когда-то проверял свои открытия.

Напишите, пож-ста, формулы для равномерн. прямолин. движения - координата, скорость и т. д.

Алёночка

Равномерным прямолинейным движением называется такое прямолинейное движение, при котором материальная точка (тело) движется по прямой и в любые равные промежутки времени совершает одинаковые перемещения.
Вектор скорости равномерного прямолинейного движения материальной точки направлен вдоль ее траектории в сторону движения. Вектор скорости при равномерном прямолинейном движении равен вектору перемещения за любой промежуток времени, поделенному на этот промежуток времени.
Примем линию, по которой движется материальная точка, за ось координат ОХ, причем за положительное направление оси выберем направление движения точки. Тогда, спроецировав векторы r и v, на эту ось, для проекций ∆rx = |∆r| и ∆vx = |∆v| этих векторов мы можем записать:

отсюда получаем уравнение равномерного движения:
∆rx = vx · t
Т. к. при равномерном прямолинейном движении S = |∆r|, можем записать: Sx = vx · t. Тогда для координаты тела в любой момент времени имеем:
х = х0 + Sx = х0 + vx · t,
где х0 - координата тела в начальный момент t = 0.
[ссылка заблокирована по решению администрации проекта]



I. ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

ТЕМА 1.1. «КИНЕМАТИКА ПРЯМОЛИНЕЙНОГО И КРИВОЛИНЕЙНОГО ДВИЖЕНИЯ»

КИНЕМАТИКА ПРЯМОЛИНЕЙНОГО ДВИЖЕНИЯ

В этой главе предстоит изучить самый простой вид движения – ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ .

Прямолинейным называется движение, которое осуществляется вдоль прямой линии. Выражаясь научно, это движение, траектория которого представляет собой прямую линию.

Любое физическое явление описывается посредством математических формул, в которых фигурируют физические величины. Поэтому необходимо оговорить эти самые физические величины, характеризующие движение, в том числе и прямолинейное. Таковыми являются:

Таблица 1.1

Заметьте, что в таблице 1.1 умышленно не приводится определение времени, поскольку оно скорее философское, чем физическое. А для изучения этого раздела физики вполне достаточно бытового представления о времени.

Таким образом, при помощи этих четырех величин описываются все виды прямолинейного движения. А их всего три:

  1. РАВНОМЕРНОЕ ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ
  2. РАВНОПЕРЕМЕННОЕ ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ
  3. НЕРАВНОПЕРЕМЕННОЕ ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ

Рассмотрим каждое из них. А начнем с самого простого – равномерного прямолинейного движения.

1. Равномерное прямолинейное движение – это движение с постоянной скоростью. Если скорость тела не изменяется, то ускорения у него попросту нет. Математические признаки этого движения записываются следующим образом:

υ=const, a=0 .

Попытаемся представить себе это движение: тело движется со скоростью, к примеру,

5 м/с, и, поскольку движение равномерное, его скорость не изменяется. Это означает, что за каждую секунду оно проходит расстояние в 5 метров. Как определить, какое расстояние пройдет это тело за время t = 20 секунд? Для этого нужно 5 м/с умножить на 20 с – получим расстояние S = 100 м. Таким образом, можем записать формулу равномерного прямолинейного движения:

S = υt

Отсюда легко вывести формулу скорости: (1.1)

2. Равнопеременное движение – это движение с постоянным ускорением. В этом случае скорость все время изменяется, но изменяется равномерно: за каждую секунду на одну и ту же величину. Эта величина и равна ускорению тела. Например: тело движется с постоянным ускорением а = 2 м/с 2 . Если в определенный момент времени скорость тела равна, к примеру, 10 м/с, то в следующую секунду она увеличится на 2 м/с и будет равна 12 м/с, еще через секунду она увеличится еще на 2 м/с и станет равна уже

14 м/с – так каждую секунду. Получается равноускоренное движение.

Но тело может двигаться так, что его скорость будет не увеличиваться, а наоборот уменьшаться. И в этом случае ускорение у тела тоже есть. Но, если в предыдущем примере оно было больше нуля (а > 0 ), т.е. положительным, то при уменьшении скорости ускорение меньше нуля (а < 0 ), т.е. считается отрицательным. Например: тело движется с постоянным ускорением а = - 2 м/с 2 . Если в определенный момент времени скорость тела равна, к примеру, 10 м/с, то в следующую секунду она уменьшится на 2 м/с и будет равна 8 м/с, еще через секунду она уменьшится еще на 2 м/с и станет равна уже 6 м/с – и, в конце концов, через 3 секунды тело остановится. Получается равнозамедленное движение. Правда слово «равнозамедленное» применять не принято, поэтому такое движение считается равноускоренным, но с отрицательным ускорением. А, в целом, движение с постоянным ускорением называется равнопеременным.

Признаки равнопеременного движения можно записать следующим образом:

υ ≠ const, a = const(a≠0) .

Математически равнопеременное движение описывается двумя уравнениями –

уравнение пути и уравнение скорости, образующие систему:

(1.2),

где υ 0 – начальная скорость тела (т.е. скорость в начале движения).

3. Неравнопеременное движение – это движение с изменяющимся ускорением . В случае этого движения все время изменяется не только скорость, но и ускорение. При чем изменяться они могут совершенно произвольно: могут все время увеличиваться или все время уменьшаться, а могут то увеличиваться, то уменьшаться. Но, как и в предыдущем случае, если скорость увеличивается, значит ускорение в это время положительное и сонаправлено со скоростью. А, если скорость уменьшается, то ускорение – отрицательное и направлено противоположно скорости (см. рис.1.1 и 1.2).

Рис. 1.1 Рис. 1.2

а > 0 а < 0

Признаки неравнопеременного движения можно записать следующим образом:

υ ≠ const, a ≠ const.

Как видите, из всех прямолинейных движений этот вид – самый сложный. Но, тем не менее, и для него существуют формулы, позволяющие просчитывать все характеристики движения. Их тоже две: уравнение скорости и уравнение ускорения.

Символ « » означает, что нужно выполнить действие дифференцирования по времени. Формально дифференцирование выполняется так же, как и взятие производной, только записывается в другой форме.

Обратите внимание, что формулы (1.1) и (1.4) отличаются лишь наличием символа дифференцирования. И неудивительно, ведь они описывают разновидности прямолинейного движения. И формулы (1.4) и (1.5) являются общими формулами для всех трех случаев прямолинейного движения.

Возникает вопрос: как можно вычислить, например, S, руководствуясь этими формулами? – Для этого нужно совершить действие, обратное дифференцированию. А таковым является интегрирование. Проделаем это.

Механическим движением тела (точки) называется изменение его положения в пространстве относительно других тел с течением времени.

Виды движений:

А) Равномерное прямолинейное движение материальной точки: Начальные условия


. Начальные условия



Г) Гармоническое колебательное движение. Важным случаем механического движения являются колебания, при которых параметры движения точки (координаты, скорость, ускорение) повторяются через определенные промежутки времени.

О писания движения . Существуют различные способы описания движения тел. При координатном способе задания положения тела в декартовой системе координат движение материальной точки определяется тремя функциями, выражающими зависимость координат от времени:

x = x (t ), y =у(t ) и z = z (t ) .

Эта зависимость координат от времени называется законом движения (или уравнением движения).

При векторном способе положение точки в пространстве определяется в любой момент времени радиус-вектором r = r (t ) , проведенным из начала координат до точки.

Существует еще один способ определения положения материальной точки в пространстве при заданной траектории ее движения: с помощью криволинейной координаты l (t ) .

Все три способа описания движения материальной точки эквивалентны, выбор любого из них определяется соображениями простоты получаемых уравнений движения и наглядности описания.

Под системой отсчета понимают тело отсчета, которое условно считается неподвижным, систему координат, связанную с телом отсчета, и часы, также связанные с телом отсчета. В кинематике система отсчета выбирается в соответствии с конкретными условиями задачи описания движения тела.

2. Траектория движения. Пройденный путь. Кинематический закон движения.

Линия, по которой движется некоторая точка тела, называется траекторией движения этой точки.

Длина участка траектории, пройденного точкой при ее движении, называется пройденным путем .

Изменение радиус- вектора с течением времени называют кинематическим законом :
При этом координаты точек будут являться координатами по времени:x = x (t ), y = y (t ) и z = z (t ).

При криволинейном движении путь больше модуля перемещения, так как длина дуги всегда больше длины стягивающей её хорды

Вектор, проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиус-вектора точки за рассматриваемый промежуток времени), называется перемещением . Результирующее перемещение равно векторной сумме последовательных перемещений.

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории, и модуль перемещения равен пройденному пути.

3. Скорость. Средняя скорость. Проекции скорости.

Скорость - быстрота изменения координаты. При движении тела (материальной точки) нас интересует не только его положение в выбранной системе отсчета, но и закон движения, т. е. зависимость радиус-вектора от времени. Пусть моменту времени соответствует радиус-вектордвижущейся точки, а близкому моменту времени- радиус-вектор. Тогда за малый промежуток времени
точка совершит малое перемещение, равное

Для характеристики движения тела вводится понятие средней скорости его движения:
Эта величина является векторной, совпадающей по направлению с вектором
. При неограниченном уменьшенииΔt средняя скорость стремится к предельному значению, которое называется мгновенной ско­ростью :

Проекции скорости.

А) Равномерное прямолинейное движение материальной точки:
Начальные условия

Б) Равноускоренное прямолинейное движение материальной точки:
. Начальные условия

В) Движение тела по дуге окружности с постоянной по модулю скоростью:

Равномерное движение - это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение - это движение по прямой линии, то есть траектория прямолинейного движения - это прямая линия.

Это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Например, если мы разобьём какой-то временной интервал на отрезки по одной секунде, то при равномерном движении тело будет перемещаться на одинаковое расстояние за каждый из этих отрезков времени.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости:

vcp = v

Скорость равномерного прямолинейного движения - это физическая векторная величина, равная отношению перемещения тела за любой промежуток времени к значению этого промежутка t:

= / t

Таким образом, скорость равномерного прямолинейного движения показывает, какое перемещение совершает материальная точка за единицу времени.

Перемещение при равномерном прямолинейном движении определяется формулой:

Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна:

vx = v, то есть v > 0

Проекция перемещения на ось ОХ равна:

s = vt = x - x0

где x 0 - начальная координата тела, х - конечная координата тела (или координата тела в любой момент времени)

Уравнение движения , то есть зависимость координаты тела от времени х = х(t), принимает вид:

х = x0 + vt

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v < 0), и тогда уравнение движения принимает вид:

х = x0 - vt

Равномерное прямолинейное движение - это частный случай неравномерного движения.

Неравномерное движение - это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.

Равнопеременное движение - это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение - это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение - это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости - м/с.

vcp = s / t

Это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

= "

Проекция вектора скорости на ось ОХ:

vx = x’

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

Это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

= " = " Учитывая, что 0 - скорость тела в начальный момент времени (начальная скорость), - скорость тела в данный момент времени (конечная скорость), t - промежуток времени, в течение которого произошло изменение скорости, будет следующей:

Отсюда формула скорости равнопеременного движения в любой момент времени:

0 + t Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

vx = v0x ± axt

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения - это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени - это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

0a = v0 bc = v

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:


В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «-» (минус).

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t 1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:


Поможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При а x < 0 и х 0 = 0 ветви параболы направлены вниз (рис. 1.18).

1) Аналитический способ.

Считаем шоссе прямолинейным. Запишем уравнение движения велосипедиста. Так как велосипедист двигался равномерно, то его уравнение движения:

(начало координат помещаем в точку старта, поэтому начальная координата велосипедиста равна нулю).

Мотоциклист двигался равноускоренно. Он также начал движение с места старта, поэтому его начальная координата равна нулю, начальная скорость мотоциклиста также равна нулю (мотоциклист начал двигаться из состояния покоя).

Учитывая, что мотоциклист начал движение на позже, уравнение движения мотоциклиста:

При этом скорость мотоциклиста изменялась по закону:

В момент, когда мотоциклист догнал велосипедиста их координаты равны, т.е. или:

Решая это уравнение относительно , находим время встречи:

Это квадратное уравнение. Определяем дискриминант:

Определяем корни:

Подставим в формулы числовые значения и вычислим:

Второй корень отбрасываем как несоответствующий физическим условиям задачи: мотоциклист не мог догнать велосипедиста через 0,37 с после начала движения велосипедиста, так как сам покинул точку старта только через 2 с после того, как стартовал велосипедист.

Таким образом, время, когда мотоциклист догнал велосипедиста:

Подставим это значение времени в формулу закона изменения скорости мотоциклиста и найдем значение его скорости в этот момент:

2) Графический способ.

На одной координатной плоскости строим графики изменения со временем координат велосипедиста и мотоциклиста (график для координаты велосипедиста — красным цветом, для мотоциклиста — зеленым). Видно, что зависимость координаты от времени для велосипедиста — линейная функция, и график этой функции — прямая (случай равномерного прямолинейного движения). Мотоциклист двигался равноускоренно, поэтому зависимость координаты мотоциклиста от времени — квадратичная функция, графиком которой является парабола.