Маркетинг

Теоретико-вероятностные (стохастические) модели и методы исследований. Стохастическая модель Рассмотрим одну из распространенных классификаций моделей по средствам моделирования, именно этот аспект является наиболее важным при анализе различных явлений и

Как уже говорилось выше, стохастические модели – это модели вероятностные. При этом в результате расчетов можно сказать с достаточной степенью вероятности, каково будет значение анализируемого показателя при изменении фактора. Самое частое применение стохастических моделей – прогнозирование.

Стохастическое моделирование является в определенной степени дополнением и углублением детерминированного факторного анализа. В факторном анализе эти модели используются по трем основным причинам:

  • необходимо изучить влияние факторов, по которым нельзя построить жестко детерминированную факторную модель (например, уровень финансового левериджа);
  • необходимо изучить влияние сложных факторов, которые не поддаются объединению в одной и той же жестко детерминированной модели;
  • необходимо изучить влияние сложных факторов, которые не могут быть выражены одним количественным показателем (например, уровень научно-технического прогресса).

В отличие от жестко детерминированного стохастический подход для реализации требует ряда предпосылок:

  1. наличие совокупности;
  2. достаточный объем наблюдений;
  3. случайность и независимость наблюдений;
  4. однородность;
  5. наличие распределения признаков, близкого к нормальному;
  6. наличие специального математического аппарата.

Построение стохастической модели проводится в несколько этапов:

  • качественный анализ (постановка цели анализа, определение совокупности, определение результативных и факторных признаков, выбор периода, за который проводится анализ, выбор метода анализа);
  • предварительный анализ моделируемой совокупности (проверка однородности совокупности, исключение аномальных наблюдений, уточнение необходимого объема выборки, установление законов распределения изучаемых показателей);
  • построение стохастической (регрессионной) модели (уточнение перечня факторов, расчет оценок параметров уравнения регрессии, перебор конкурирующих вариантов моделей);
  • оценка адекватности модели (проверка статистической существенности уравнения в целом и его отдельных параметров, проверка соответствия формальных свойств оценок задачам исследования);
  • экономическая интерпретация и практическое использование модели (определение пространственно-временной устойчивости построенной зависимости, оценка практических свойств модели).

Основные понятия корреляционного и регрессионного анализа

Корреляционный анализ - совокупность методов математической статистики, позволяющих оценивать коэффициенты, характеризующие корреляцию между случайными величинами, и проверять гипотезы об их значениях на основе расчета их выборочных аналогов.

Корреляционным анализом называется метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными.

Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение тому – сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции .

В наиболее общем виде задача статистики (и, соответственно, экономического анализа) в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая – регрессионный анализ. В то же время ряд исследователей объединяет эти методы в корреляционно-регрессионный анализ, что имеет под собой некоторые основания: наличие целого ряда общих вычислительных процедур, взаимодополнения при интерпретации результатов и др.

Поэтому в данном контексте можно говорить о корреляционном анализе в широком смысле – когда всесторонне характеризуется взаимосвязь. В то же время выделяют корреляционный анализ в узком смысле – когда исследуется сила связи – и регрессионный анализ, в ходе которого оцениваются ее форма и воздействие одних факторов на другие.

Задачи собственнокорреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов оказывающих наибольшее влияние на результативный признак.

Задачирегрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значении зависимой переменной.

Решение названных задач опирается на соответствующие приемы, алгоритмы, показатели, что дает основание говорить о статистическом изучении взаимосвязей.

Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования.

Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. На практике это положение чаще всего принимается априори. Собственно, эти методы – параметрические – и принято называть корреляционными.

Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Их преимуществом является и простота вычислений.

Автокорреляция - статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса - со сдвигом по времени.

Парная корреляция

Простейшим приемом выявления связи между двумя признаками является построение корреляционной таблицы:

\ Y \ X \ Y 1 Y 2 ... Y z Итого Y i
X 1 f 11 ... f 1z
X 1 f 21 ... f 2z
... ... ... ... ... ... ...
X r f k1 k2 ... f kz
Итого ... n
... -

В основу группировки положены два изучаемых во взаимосвязи признака – Х и У. Частоты f ij показывают количество соответствующих сочетаний Х и У.

Если f ij расположены в таблице беспорядочно, можно говорить об отсутствии связи между переменными. В случае образования какого-либо характерного сочетания f ij допустимо утверждать о связи между Х и У. При этом, если f ij концентрируется около одной из двух диагоналей, имеет место прямая или обратная линейная связь.

Наглядным изображением корреляционной таблице служит корреляционное поле. Оно представляет собой график, где на оси абсцисс откладывают значения Х, по оси ординат – У, а точками показывается сочетание Х и У. По расположению точек, их концентрации в определенном направлении можно судить о наличии связи.

Корреляционным полем называется множество точек {X i , Y i } на плоскости XY (рисунки 6.1 - 6.2).

Если точки корреляционного поля образуют эллипс, главная диагональ которого имеет положительный угол наклона (/), то имеет место положительная корреляция (пример подобной ситуации можно видеть на рисунке 6.1).

Если точки корреляционного поля образуют эллипс, главная диагональ которого имеет отрицательный угол наклона (\), то имеет место отрицательная корреляция (пример изображен на рисунке 6.2).

Если же в расположении точек нет какой-либо закономерности, то говорят, что в этом случае наблюдается нулевая корреляция.

В итогах корреляционной таблицы по строкам и столбцам приводятся два распределения – одно по X, другое по У. Рассчитаем для каждого Х i среднее значение У, т.е. , как

Последовательность точек (X i , ) дает график, который иллюстрирует зависимость среднего значения результативного признака У от факторного X, – эмпирическую линию регрессии, наглядно показывающую, как изменяется У по мере изменения X.

По существу, и корреляционная таблица, и корреляционное поле, и эмпирическая линия регрессии предварительно уже характеризуют взаимосвязь, когда выбраны факторный и результативный признаки и требуется сформулировать предположения о форме и направленности связи. В то же время количественная оценка тесноты связи требует дополнительных расчетов.

МАТЕМАТИЧЕСКИЕ МОДЕЛИ

2.1. Постановка задачи

Детерминированные модели описывают процессы в детерминированных системах.

Детерминированные системы характеризуются однозначным соответствием (соотношением) между входными и выходными сигналами (процессами).

Если задан входной сигнал такой системы, известны ее характеристика y = F(x), а также ее состояние в начальный момент времени, то значение сигнала на выходе системы в любой момент времени определяется однозначно (рис. 2.1).

Существует два подхода к исследованию физических систем: детерминированный и стохастический.

Детерминированный подход основан на применении детерминированной математической модели физической системы.

Стохастический подход подразумевает использование стохастической математической модели физической системы.

Стохастическая математическая модель наиболее адекватно (достоверно) отображает физические процессы в реальной системе, функцио-нирующей в условиях влияния внешних и внутренних случайных факторов (шумов).

2.2. Случайные факторы (шумы)

Внутренние факторы

1) температурная и временная нестабильность электронныхкомпонентов;

2) нестабильность питающего напряжения;

3) шум квантования в цифровых системах;

4) шумы в полупроводниковых приборах в результате неравномерности процессов генерации и рекомбинации основных носителей заряда;

5) тепловой шум в проводниках за счет теплового хаотического движения носителей заряда;

6) дробовой шум в полупроводниках, обусловленный случайным характером процесса преодоления носителями потенциального барьера;

7) фликкер – шум, обусловленный медленными случайными флуктуациями физико-химического состояния отдельных областей материалов электронных устройств и т. д.

Внешние факторы

1) внешние электрические и магнитные поля;

2) электромагнитные бури;

3) помехи, связанные с работой промышленности и транспорта;

4) вибрации;

5) влияние космических лучей, тепловое излучение окружающих объектов;

6) колебания температуры, давления, влажности воздуха;

7) запыленность воздуха и т. д.

Влияние (наличие) случайных факторов приводит к одной из ситуаций, приведенных на рис. 2.2:

С ледовательно, предположение о детерминированном характере физической системы и описание ее детерминированной математической моделью является идеализацией реальной системы. Фактически имеем ситуацию, изображенную на рис. 2.3.

Детерминированная модель допустима в следующих случаях:

1) влияние случайных факторов столь незначительно, что пренебрежение ими не приведет к ощутимому искажению результатов моделирования.

2) детерминированная математическая модель отображает реальные физические процессы в усредненном смысле.

В тех задачах, где не требуется высокой точности результатов моделирования, предпочтение отдается детерминированной модели. Это объясняется тем, что реализация и анализ детерминированной математической модели много проще, чем стохастической.

Детерминированная модель недопустима в следующих ситуациях: случайные процессы ω(t) соизмеримы с детерминированными x(t). Результаты, полученные с помощью детерминированной математической модели, будут неадекватными реальным процессам. Это относится к системам радиолокации, к системам наведения и управления летательными аппаратами, к системам связи, телевидению, к системам навигации, к любым системам, работающим со слабыми сигналами, в электронных устройствах контроля, в прецизионных измерительных устройствах и т. д.

В математическом моделировании случайный процесс часто рассматривают как случайную функцию времени, мгновенные значения которой являются случайными величинами.

2.3. Суть стохастической модели

Стохастическая математическая модель устанавливает вероятностные соотношения между входом и выходом системы . Такая модель позволяет сделать статистические выводы о некоторых вероятностных характеристиках исследуемого процесса y(t):

1) математическое ожидание (среднее значение):

2) дисперсия (мера рассеивания значений случайного процесса y(t) относительно его среднего значения):

3) среднее квадратичное отклонение:

(2.3)

4) корреляционная функция (характеризует степень зависимости – корреляции – между значениями процесса y(t), отстоящими друг от друга на время τ):

5) спектральная плотность случайного процесса y(t) описывает его частотные свойства:

(2.5)

преобразование Фурье.

Стохастическаямодель формируется на основе стохастического дифференциального либо стохастического разностного уравнения.

Различают три типа стохастических дифференциальных уравнений: со случайными параметрами, со случайными начальными условиями, со случайным входным процессом (случайной правой частью). Приведем пример стохастического дифференциального уравнения третьего типа:

, (2.6)

где
аддитивный случайный процесс – входной шум.

В нелинейных системах присутствуют мультипликативные шумы .

Анализ стохастических моделей требует использования довольно сложного математического аппарата, особенно для нелинейных систем.

2.4. Понятие типовой модели случайного процесса. Нормальный (гауссовский) случайный процесс

При разработке стохастической модели важное значение имеет определение характера случайного процесса
. Случайный процесс может быть описан набором (последовательностью) функций распределения – одномерной, двумерной, … , n-мерной или соответствующими плотностями распределения вероятности. В большинстве практических задач ограничиваются определением одномерного и двумерного законов распределения.

В некоторых задачах характер распределения
априорно известен.

В большинстве случаев, когда случайный процесс
представляет собой результат воздействия на физическую систему совокупности значительного числа независимых случайных факторов, полагают, что
обладает свойствами нормального (гауссовского) закона распределения . В этом случае говорят, что случайный процесс
заменяется его типовой моделью – гауссовским случайным процессом. Одномерная плотность распределения вероятности нормального (гауссовского)случайного процесса приведена на рис. 2.4.

Нормальное (гауссовское) распределение случайного процесса обладает следующими свойствами .

1. Значительное количество случайных процессов в природе подчиняются нормальному (гауссовскому) закону распределения.

2. Возможность достаточно строго определить (доказать) нормальный характер случайного процесса.

3. При воздействии на физическую систему совокупности случайных факторов с различными законами распределения их суммарный эффект подчиняется нормальному закону распределения (центральная предельная теорема ).

4. При прохождении через линейную систему нормальный процесс сохраняет свои свойства в отличие от других случайных процессов.

5. Гауссовский случайный процесс может быть полностью описан с помощью двух характеристик – математического ожидания и дисперсии.

В процессе моделирования часто возникает задача – определить характер распределения некоторой случайной величины x по результатам её многократных измерений (наблюдений)
. Для этого составляют гистограмму – ступенчатый график, позволяющий по результатам измерения случайной величины оценить её плотность распределения вероятности.

При построении гистограммы диапазон значений случайной величины
разбивают на некоторое количество интервалов, а затем подсчитывают частоту (процент) попадания данных в каждый интервал. Таким образом, гистограмма отображает частоту попадания значений случайной величины в каждый из интервалов. Если аппроксимировать построенную гистограмму непрерывной аналитической функцией, то эта функция может рассматриваться как статистическая оценка неизвестной теоретической плотности распределения вероятности.

При формировании непрерывных стохастических моделей используется понятие «случайный процесс». Разработчики разностных стохастических моделей оперируют понятием «случайная последовательность».

Особую роль в теории стохастического моделирования играют марковские случайные последовательности. Для них справедливо следующее соотношение для условной плотности вероятности:

Из него следует, что вероятностный закон, описывающий поведение процесса в момент времени , зависит только от предыдущего состояния процесса в момент времени
и абсолютно не зависит от его поведения в прошлом (т. е. в моменты времени
).

Перечисленные выше внутренние и внешние случайные факторы (шумы) представляют собой случайные процессы различных классов. Другими примерами случайных процессов являются турбулентные течения жидкостей и газов, изменение нагрузки энергосистемы, питающей большое количество потребителей, распространение радиоволн при наличии случайных замираний радиосигналов, изменение координат частицы в броуновском движении, процессы отказов аппаратуры, поступления заявок на обслуживание, распределение числа частиц в малом объеме коллоидного раствора, задающее воздействие в радиолокационных следящих системах, процесс термоэлектронной эмиссии с поверхности металла и т. д.

Существенной особенностью социально-экономических процессов является невозможность однозначно предсказать их ход на основе имеющейся априори информации. Несмотря на то, что социально-экономические процессы подчиняются определенным объективным законам, в каждом конкретном процессе эти законы проявляются через множество неопределенностей .

Математическая же модель процесса может содержать либо детерминированные параметры и связи, либо стохастические, но не может (по крайней мере, при нынешнем состоянии науки) содержать неопределенности.

Выбор детерминированного либо стохастического подхода к моделированию того или иного социально-экономического процесса зависит от целей моделирования, возможной точности определения исходных данных, требуемой точности результатов и отражает информацию исследователя о природе причинно-следственных связей реального процесса. При этом неопределенные факторы, которые могут иметь место в реальных процессах, должны быть приближенно представлены как детерминированные или стохастические. Характер параметров, входящих в модель, относится к тем исходным допущениям, которые могут быть обоснованы только эмпирическим путем. Соответствующая гипотеза о детерминированном или стохастическом характере параметров и связей модели принимается в том случае, если она в пределах требуемой или возможной точности определения этих параметров не противоречит опытным данным.

Большинство современных моделей социально-экономических процессов основано на теоретико-вероятностных конструкциях . В связи с этим целесообразно рассмотреть вопрос об исходных посылках применимости таких конструкций к моделированию.

Теория вероятностей изучает математические модели экспериментов (реальных явлений), исход которых не вполне однозначно определяется условиями опыта. Поэтому неоднозначность социально-экономических процессов часто является решающей в выборе стохастического (вероятностного) подхода к их моделированию. Вместе с тем не всегда учитывается, что аппарат теории вероятностей применим для описания и изучения не любых экспериментов с неопределенными исходами, а лишь экспериментов, исходы которых обладают статистической устойчивостью . Тем самым важнейший вопрос об эмпирическом обосновании применимости теоретико-вероятностных методов к рассматриваемым конкретным характеристикам социально-экономических процессов иногда полностью выпадает из поля зрения.

Применимость методов теории вероятностей для исследования тех или иных процессов может быть обоснована только эмпирически на основе анализа статистической устойчивости характеристик этих процессов.

Статистическая устойчивость представляет собой устойчивость эмпирического среднего, частоты события или каких-либо других характеристик протокола измерений исследуемого параметра того или иного процесса.

Следует, однако, отметить, что вопрос о статистической устойчивости реального социально-экономического процесса в целом, а, следовательно, и о применимости теоретико-вероятностных понятий к его моделированию, в настоящее время может быть решен только на интуитивном уровне. Это объективно обусловлено отсутствием достаточного числа опытов, касающихся процесса в целом. Вместе с тем большинство «элементарных» процессов, составляющих тот или иной социально-экономический процесс, носят случайный характер (т.е. гипотеза об их статистической устойчивости не противоречит имеющемуся опыту). Так, например, факт покупки того или иного количества конкретного товара за установленный период времени достаточно часто является случайным событием. Случайным является количество родившихся детей. Случайный характер носят процессы потребления. Случайными являются отказы техники, моральное состояние людей, участвующих в производстве товаров и услуг и т.д. Случайность этих явлений эмпирически подтверждена достаточно большим числом экспериментов.

Все указанные «элементарные» случайные процессы взаимодействуют между собой, объединяясь в едином социально-экономическом процессе. Несмотря на то, что управление в социально-экономической сфере направлено на снижение элемента случайности и придание этому процессу детерминированного целенаправленного характера, реальные процессы столь сложны, что как бы ни была высока степень централизации управления, случайные факторы в них всегда присутствуют. Поэтому природа социально-экономических процессов остается случайной в широком смысле. Это служит основанием для применения стохастических моделей при их исследовании, хотя полную стохастическую устойчивость того или иного процесса в целом вряд ли можно вполне гарантировать.

В настоящее время сложились два основных подхода к стохастическому моделированию социально-экономических процессов (рис. 4.8). Первое направление связано с построением стохастических моделей на основе метода статистических испытаний (Монте-Карло). Второе направление заключается в построении аналитических моделей. Оба эти направления развиваются параллельно и взаимно дополняют друг друга.

Главной особенностью моделей, основанных на методе статистических испытаний, является то, что они приближенно воспроизводят социально-экономический процесс на основе имитации его элементарных составляющих и их взаимосвязей. Это позволяет моделировать процессы очень сложной структуры, зависящие от большого числа разнообразных факторов. Вместе с тем модели статистических испытаний, как правило, громоздки. Их применение требует большого объема памяти ЭВМ и связано с большими затратами машинного времени. Существенным недостатком этих моделей также является отсутствие конструктивных способов оптимизации.

Некоторые из недостатков имитационных статистических моделей социально-экономических процессов преодолеваются применением аналитических моделей.

Рис. 4.8. Стохастическое моделирование социально-экономических процессов

В настоящее время для построения аналитических моделей стохастических процессов применяются два основных подхода – микроскопический и макроскопический.

Микроскопический подход состоит в детальном изучении поведения каждого элемента социально-экономической системы.

Макроскопические модели изучают только макросвойства системы и учитывают только средние характеристики состояния системы, например, среднее количество элементов системы, находящихся в некотором определенном состоянии. Это приводит к потере информации о состоянии каждого элемента социально-экономической системы, так как одни и те же макросостояния могут быть результатом различных сочетаний микросостояний. В то же время макроскопический подход позволяет сократить размерность математической модели, сделать ее более обозримой, сократить затраты ресурсов ЭВМ при производстве расчетов. Микроскопический подход предпочтителен в случае, когда требуется более детальная информация о поведении системы. Макроскопический подход применяется для достаточно быстрых оценочных расчетов.

Отличительная черта детерминированной модели состоит в том, что при заданных параметрах и начальных условиях процесс полностью определен для любого момента времени t > 0.

При стохастической трактовке модель описывает динамику вероятностных характеристик (например, математических ожиданий) процесса и, следовательно, характеризует процесс в среднем, представляя лишь оценки для каждой конкретной реализации. Стохастические модели социально-экономических процессов позволяют предсказать только средние результаты (моменты распределения результатов процесса) или вероятности наступления тех или иных результатов.

Моделирование – построение моделей для исследования и изучения объектов, процессов, явлений.

стохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса, и оцениваются средние характеристики.

один подход к классификации математических моделей подразделяет их на детерминированные истохастические (вероятностные). В детерминированных моделях входные параметры поддаются измерению однозначно и с любой степенью точности, т.е. являются детерминированными величинами. Соответственно, процесс эволюции такой системы детерминирован. В стохастических моделях значения входных параметров известны лишь с определенной степенью вероятности, т.е. эти параметры являются стохастическими; соответственно, случайным будет и процесс эволюции системы. При этом, выходные параметры стохастической модели могут быть как величинами вероятностными, так и однозначно определяемыми.

В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:

    детерминированные,

    стохастические.

В детерминированных моделях предполагается отсутствие всяких случайных воздействий, элементы модели (переменные, математические связи) достаточно точно установленные, поведение системы можно точно определить. При построении детерминированных моделей чаще всего используются алгебраические уравнения, интегральные уравнения, матричная алгебра.

Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.

Типовые схемы. Приведенные математические соотношения представляют собой математические схемы общего вида и позволяют описать широкий класс систем. Однако в практике моделирования объектов в области системотехники и системного анализа на первоначальных этапах исследования системы рациональнее использовать типовые математические схемы.

В качестве детерминированных моделей, когда при исследовании случайные факторы не учитываются, для представления систем, функционирующих в непрерывном времени, используются дифференциальные, интегральные, интегродифференциальные и другие уравнения, а для представления систем, функционирующих в дискретном времени, конечные автоматы и конечно-разностные схемы.

В качестве стохастических моделей (при учете случайных факторов) для представления систем с дискретным временем используются вероятностные автоматы, а для представления системы с непрерывным временем – системы массового обслуживания и т. д.

Перечисленные типовые математические схемы, естественно, не могут претендовать на возможность описания на их базе всех процессов, происходящих в больших системах. Для таких систем в ряде случаев более перспективным является применение агрегативных моделей. Агрегативные модели (системы) позволяют описать широкий круг объектов исследования с отображением системного характера этих объектов. Именно при агрегативном описании сложный объект (система) расчленяется на конечное число частей (подсистем), сохраняя при этом связи, обеспечивающие взаимодействие частей.

Таким образом, при построении математических моделей процессов функционирования систем можно выделить следующие основные подходы:

    непрерывно-детерминированный (например, дифференциальные уравнения);

    дискретно-детерминированный (конечные автоматы);

    дискретно-стохастический (вероятностные автоматы);

    непрерывно-стохастический (системы массового обслуживания);

    обобщенный, или универсальный (агрегативные системы).

20. Модель популяции .

Модель – это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию о нем. Рассмотрим примеры динамических систем - модели популяций. Популя­ция (от лат.populatio- население) - термин, используемый в различных разделах биологии, а также в генетике, демографии и медицине.

Популяция - это человеческое, животное или растительное население неко­торой местности, способной к более-менее устойчивому самовоспроизводству, относительно обособленное (обычно географически) от других групп.

Описание популяций, а также происходящих в них и с ними процессов, воз­можно путем создания и исследования динамических моделей.

Пример 1. Модель Мальтуса.

Скорость роста пропорциональна текущему размеру популяции. Она описы­вается дифференциальным уравнением х = ах , где α - некоторый параметр, оп­ределяемый разностью между рождаемостью и смертностью. Решением этого уравнения является экспоненциальная функцияx(t) = х 0 е*.

Если рождаемость превосходит смертность (α > 0), размер популяция не­ограниченно и очень быстро возрастает. Понятно, что в действительности этого не может происходить из-за ограниченности ресурсов. При достижении некоторого критического объема популяции модель перестает быть адекватной, поскольку не учитывает ограниченность ресурсов. Уточнением модели Мальтуса может слу­жить логистическая модель, которая описывается дифференциальным уравнением Ферхюльста:

где x s - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к рав­новесному значению

Пример 2. Модель «хищник - жертва».

Модель взаимодействия «хищник - жертва» независимо предложили в 1925 - 1927 гг. Лотка и Вольтерра. Два дифференциальных уравнения модели­руют временную динамику численности двух биологических популяций жертвы и хищника. Предполагается, что жертвы размножаются с постоянной скоростью а их численность убывает вследствие поедания хищниками. Хищники же размно­жаются со скоростью, пропорциональной количеству пищи и умирают естествен­ным образом.

Допустим, что на некоторой территории обитают два вида животных: кро­лики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов -х, число лис -у. Используя модель Мальтуса с необходимыми поправ­ками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Вольтерра - Лотки:

х =(α -су)х;

Эта система имеет равновесное состояние, когда число кроликов и лис по­стоянно. Отклонение от этого состояния приводит к колебаниям численности кро­ликов и лис, аналогичным колебаниям гармонического осциллятора. Как и в слу­чае гармонического осциллятора, это поведение не является структурно устойчи­вым: малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения. Например, равновесное состояние может стать устойчивым, и колебания числен­ности будут затухать. Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов.

Непрерывно стохастические модели (Q -схемы)

Особенность непрерывно стохастической модели будем рассматривать на примере систем массового обслуживания (СМО) в качестве типовых математических моделей. При этом используемая система формализуется как некая система обслуживания. Характерным для таких объектов является случайное появление требований (заявок) на обслуживание и завершение обслуживания в случайные моменты времени. Т.е. характер функционирования устройств носит стохастический порядок.

Основные понятия теории массового обслуживания.

В любом элементарном акте обслуживания можно выделить две основные составляющие:

1) Ожидание обслуживания

2) Собственно, обслуживание

Некоторые виды обслуживания некоторого оборудования:

ОА – обслуживающий аппарат

К – канал

Прибор обслуживания (i-ый) состроит из:

Потоком событий называется последовательность событий происходящих одно за другим в какие-то случайные моменты времени.

Поток событий называется однородным , если он характеризуется только моментами поступления этих событий (вызывающие моменты) и задается временной последовательностью: ,

Поток называется неоднородным , если он задается следующей совокупностью , где t n – вызывающий моменты, f n – набор признаков события(наличие приоритета, принадлежность к тому или иному типу заявки).

Если интервал времени между сообщениями независимыми между собой являются случайными величинами, то такой поток называется потоком с ограниченным последействием.

Поток событий называется ординарным , если вероятность того, что на малый интервал времени примыкающий к моменту времени t попадает более одного события, пренебрежительно мала по сравнению с вероятностью того что на этот же интервал попадает ровно одно событие.

Поток называется стационарным , если вероятность появления того или иного числа событий на некотором интервале времени зависит лишь от длины интервала и не зависит от того, где на оси времени взят этот участок.

Для ординарного потока среднее число сообщений наступивших на участке примыкающих к некоторому моменту времени t будет равно .

Тогда среднее число сообщений наступивших на участке времени составит: - интенсивность ординарного потока .

Для стационарного потока – его интенсивность не зависит от времени и представляет собой постоянное значение равное среднему числу событий наступающих в единицу времени.

Поток заявок (), т.е. интервалы времени между моментами появления заявок на входе канала (это подмножество неуправляемых переменных)

Поток обслуживания () - т.е. интервалы времени между началом и окончанием обслуживанием заявок, принадлежат подмножеству управляемых заявок.

Заявки обслуженные каналом или заявки покинувшие прибор необслуженными, образуют выходной поток. Процесс функционирования i-ого прибора можно представить как процесс изменения состояний его элементов во времени.

Переход в новое состояние для i-ого прибора означает изменение количества заявок, которые находятся в накопителе или канале:

Где – состояние накопителя , если он = 0, то накопитель пуст (нет заявок), если количество заявок совпадает с емкостью накопителя, то накопитель полон; - состояние канала (0 – свободен или 1 - занят).

В практике моделирования элементарные Q-схемы обычно объединяют, при этом, если каналы различных приборов обслуживания соединены параллельно, то имеет место многоканальное обслуживание . А если последовательно – многофазное обслуживание . Таким образом для задания Q-схемы необходимо использовать оператор сопряжения R, отражающий взаимосвязь элементов структуры. Различаются разомкнутые и замкнутые Q-схемы.

Разомкнутые – выходной поток заявок не может поступить к какому либо элементу, т.е. отсутствует обратная связь

Замкнутые – есть обратная связь.

Собственными внутренними параметрами Q-схемы будут являться:

  • количество фаз
  • количество каналов в каждой фазе
  • количество накопителей каждой фазы
  • ёмкость накопителя.

В зависимости от ёмкости накопителя в теории массового обслуживания применяют следующую терминологию: если емкость равна нулю (т.е. накопитель отсутствует, а есть только канал), то система с потерями . Если ёмкость стремится к бесконечности, то система с ожиданием , т.е. очередь заявок неограниченна.

Система смешанного типа.

Для задания Q-схемы так же необходимо описать алгоритм её функционирования, который определяет набор правил поведения заявок в системе в различных ситуациях. Неоднородность заявок, отражающая процессы в той или иной реальной системе, учитывается с помощью введения классов приоритетов.

Весь набор возможных алгоритмов поведения заявок в Q-схеме можно представить в виде оператора:

Q = (W, U, R, H, Z, A)

Где W - подмножество входных потоков;

U - подмножество потока обслуживания;

R - оператор сопряжения элементов структуры;

H - подмножество собственных параметров;

Z - множество состояний системы;

A - оператор алгоритмов поведения и обслуживания заявок;

Для получения соотношений связывающих характеристики, которые определяют функционирование Q-схемы, вводят некоторые допущения относительно входных потоков, функций распределения, длительности обслуживания запросов, дисциплин обслуживания.

Для математического описания функционирования устройств, процесс функционирования которого развивается в случайном порядке, могут быть применены математические модели для описания так называемых Марковских случайных процессов .

Случайный процесс называется Марковским, если он обладает следующим свойством – для каждого момента времени вероятность любого состояния системы в будущем (т.е. в какой-то момент времени ) зависит только от состояния системы в настоящем и не зависит от того, когда и каким образом система пришла в это состояние. Иначе, в Марковском случайном процессе будущее его развитие зависит только от его настоящего состояния и не зависит от исторического процесса.

/* реально таких систем, конечно, не существует. Но существуют механизмы, которые позволяют свести к этим процессам.*/

Для Марковских процессов обычно составляют уравнения Колмогорова.

В общем виде уравнения Колмогорова выглядят следующим образом:

где - вектор, определяющий некоторый набор коэффициентов присущих системе

Для стационарного соотношения:

,

что дает возможность для стационарной зависимости получить

А затем связать выходные характеристики через набор коэффициентов соответствующих системе:

Последнее соотношение представляет собой зависимость выходных параметров от некоторых внутренних параметров модели, и имеют название базисной модели .

В результате всего нам нужно найти:

Которая будет называться интерфейсной моделью .

Следовательно, математическая модель системы строится как совокупность базисной и интерфейсной модели, что позволяет использовать одни и те же базисные модели, для различных задач проектирования осуществляя настройку на соответствующую задачу посредством изменения только интерфейсной модели. Для Q-схем математическая модель должна обеспечивать вычисление времени реакции и определения производительности системы.

Пример: пусть есть некоторая система S, имеющая конечный набор состояний (будем рассматривать для 4 состояний).

Получаем ориентированный граф:

Плотности вероятностей для множества состояний.

Найдем вероятность, т.е. вероятность того что в момент t система будет находиться в состоянии .

Придадим t малое приращение и найдем, что в момент времени система будет находится в состоянии .

Это может быть реализовано двумя способами:

Вероятность первого способа найдем как произведение вероятности на условную вероятность того, что будучи в состоянии система за время не перейдет из него в состояние. Это условная вероятность с точностью до бесконечно малых величин высших порядков будет равна:

Аналогично вероятность второго способа равна вероятности того что в следующий момент t была в состоянии умноженную на условную вероятность перехода в состояния, т.е.:

=>

Мы вывели уравнение Колмогорова для первого состояния.

Интегрирование данной системы дает искомые вероятности системы как ф-ции времени. Начальные условия берутся в зависимости от того какого было начальное состояние системы. Например, если в момент времени t = 0, система находилась в состоянии, то начальное условие будет .

Кроме того, необходимо добавлять условие нормировки (сумма вероятностей = 1).

Уравнение Колмогорова строится по следующему правилу: в левой части каждого уравнения стоит производная вероятности состояния, а правая часть содержит столько членов сколько стрелок связано с данным состоянием. Если стрелка направлена из состояния, то соответствующий член имеет знак "-", в состояние – "+". Каждый член равен произведению плотности вероятности перехода (интенсивности) соответствующий данной срелке, умноженной на вероятность того состояния, из которого исходит стрелка.

Лабораторная работа №1.

Определить среднее относительное время пребывания системы в предельном стационарном состоянии. Интенсивности переходов из состояния в состояние задаются в виде матрицы размером ≤ 10.

Отчет: название, цель, теоретическая часть и расчеты.

Рассмотрим многоканальную систему массового обслуживания с отказами.

Будем нумеровать состояние системы по числу занятых каналов. Т.е. по числу заявок в системе.

Обзовем состояния:

Все каналы свободны

Занят один канал, остальные свободны

Занято k каналов, остальные свободны

Заняты все n каналов

Граф состояний:

Разметим граф, т.е. расставим интенсивности соответствующих событий.

По стрелкам с лева на право система переводит один и тот же поток с интенсивностью .

Определим интенсивность потоков событий, переводящих систему справа на лево.

Пусть система находится в . Тогда, когда закончится обслуживание заявки занимающей этот канал, система перейдет в => поток, переводящий систему в другое состояние, будет иметь интенсивность перехода m . Если занято 2 канала, а не один, то интенсивность перехода составит 2m .

Уравнения Колмогорова:

Предельные вероятности состояний p 0 и p n характеризуют установившийся режим работы системы массового обслуживания при t ® ¥.

Среднее число заявок, приходящих в систему за среднее время обслуживания одной заявки.

Зная все вероятности состояний p 0 , … , p n , можно найти характеристики СМО:

  • вероятность отказа – вероятность того, что все n каналов заняты

  • относительная пропускная способность – вероятность того, что заявка будет принята к обслуживанию
  • среднее число заявок, обслуженных в единицу времени

Полученные соотношения могут рассматриваться как базисная модель оценки характеристик производительности системы. Входящий в эту модель параметр , является усредненной характеристикой пользователя. Параметр m является функцией технических характеристик компьютера и решаемых задач.

Эта связь может быть установлена с помощью соотношений, называемых интерфейсной моделью. Если время ввода/вывода информации по каждой задачи мало по сравнению со временем решения задачи, то логично принять, что время решения равно 1 / m и равно отношению среднего числа операций, выполненных процессором при решении одной задачи к среднему быстродействию процессора.

Самостоятельно: Метод вложенных цепей Маркова

Требования к отчету: название, цель, краткие теоретические сведения (писать то что не знаешь), пример, текст программы.

Немарковские случайные процессы, сводящиеся к марковским.

Реальные процессы весьма часто обладают последействием и поэтому не являются Марковским. Иногда при исследовании таких процессов удается воспользоваться методами, разработанными для Марковских цепей. Наиболее распространенными являются:

1. Метод разложения случайного процесса на фазы (метод псевдо состояний)

2. Метод вложенных цепей