Экономика 

Экспериментальное подтверждение теории большого взрыва. Большой взрыв и происхождение Вселенной. Загадки Вселенной: что было во Вселенной до Большого взрыва? С момента большого взрыва вещество вселенной

Большой взрыв относится к разряду теорий, пытающихся в полном объеме проследить историю рождения Вселенной, определить начальные, текущие и конечные процессы в ее жизни.

Было ли что-то до того, как появилась Вселенная? Этот краеугольный, практически метафизический вопрос задается учеными и по сегодняшний день. Возникновение и эволюция мироздания всегда были и остаются предметом жарких споров, невероятных гипотез и взаимоисключающих теорий. Основными версиями происхождения всего, что нас окружает, по церковной трактовке предполагалось божественное вмешательство, а научный мир поддерживал гипотезу Аристотеля о статичности мироздания. Последней модели придерживался Ньютон, защищавший безграничность и постоянство Вселенной, и Кант, развивший эту теорию в своих трудах. В 1929 году американский астроном и космолог Эдвин Хаббл кардинально изменил взгляды ученых на мир.

Он не только обнаружил наличие многочисленных галактик, но и расширение Вселенной – непрерывное изотропное увеличение размеров космического пространства, начавшееся в миг Большого взрыва.

Кому мы обязаны открытием Большого взрыва?

Работы Альберта Эйнштейна над теорией относительности и его гравитационные уравнения позволили де Ситтеру создать космологическую модель Вселенной. Дальнейшие изыскания были привязаны к этой модели. В 1923 г. Вейль предположил, что помещенное в космическом пространстве вещество должно расширяться. Огромное значение в разработке этой теории имеет работа выдающегося математика и физика А. А. Фридмана. Еще в 1922 г. он допустил расширение Вселенной и сделал обоснованные выводы о том, что начало всей материи находилось в одной безгранично плотной точке, а развитие всему дал Большой взрыв. В 1929 г. Хаббл опубликовал свои статьи, объясняющие подчинение лучевой скорости расстоянию, впоследствии эта работа стала называться «законом Хаббла».

Г. А. Гамов, опираясь на теорию Фридмана о Большом взрыве, разработал идею о высокой температуре исходного вещества. Также он предположил наличие космического излучения, не пропавшего с расширением и остыванием мира. Ученый выполнил предварительные расчеты возможной температуры остаточного излучения. Предполагаемое им значение находилось в диапазоне 1-10 К. К 1950 г. Гамов сделал более точные подсчеты и объявил результат в 3 К. В 1964 радиоастрономы из Америки, занимаясь усовершенствованием антенны, путем исключения всех возможных сигналов, определили параметры космического излучения. Его температура оказалась равной 3 К. Эти сведения стали важнейшим подтверждением работы Гамова и существования реликтового излучения. Последующие измерения космического фона, проведенные в открытом космосе, окончательно доказали верность расчетов ученого. Ознакомится с картой реликтового излучения можно по .

Современные представления о теории Большого взрыва: как это произошло?

Одной из моделей, комплексно объясняющих появление и процессы развития известной нам Вселенной, стала теория Большого взрыва. Согласно широко принятой сегодня версии, изначально присутствовала космологическая сингулярность – состояние, обладающее бесконечной плотностью и температурой. Физиками было разработано теоретическое обоснование рождения Вселенной из точки, имевшей чрезвычайную степень плотности и температуры. После возникновения Большого взрыва пространство и материя Космоса начали непрекращающийся процесс расширения и стабильного охлаждения. Согласно последним исследованиям начало мирозданию было положено не менее 13,7 млрд. лет назад.

Отправные периоды в формировании Вселенной

Первый момент, воссоздание которого допускается физическими теориями, – это Планковская эпоха, формирование которой стало возможным спустя 10-43 секунд после Большого взрыва. Температура материи доходила до 10*32 К, а ее плотность равнялась 10*93 г/см3. В этот период гравитация обрела самостоятельность, отделившись от основополагающих взаимодействий. Непрекращающееся расширение и снижение температуры вызвали фазовый переход элементарных частиц.

Следующий период, характеризующийся показательным расширением Вселенной, наступил еще через 10-35 секунд. Его назвали «Космической инфляцией». Произошло скачкообразное расширение, во много раз превышающее обычное. Этот период дал ответ на вопрос, почему температура в различных точках Вселенной одинакова? После Большого взрыва вещество не сразу разлетелось по Вселенной, еще 10-35 секунд оно было довольно компактным и в нем установилось тепловое равновесие, не нарушенное при инфляционном расширении. Период дал базовый материал – кварк-глюонную плазму, использовавшуюся для формирования протонов и нейтронов. Этот процесс осуществился после дальнейшего уменьшения температуры, он именуется «бариогенезисом». Зарождение материи сопровождалось одновременным возникновением антиматерии. Два антагонистичных вещества аннигилировали, становясь излучением, но количество обычных частиц превалировало, что и позволило возникнуть Вселенной.

Очередной фазовый переход, произошедший после убывания температуры, привел к возникновению известных нам элементарных частиц. Пришедшая вслед за этим эпоха «нуклеосинтеза» ознаменовалась объединением протонов в легкие изотопы. Первые образованные ядра имели короткий срок существования, они распадались при неизбежных столкновениях с другими частицами. Более устойчивые элементы возникли уже после трех минут, прошедших после сотворения мира.

Следующей знаменательной вехой стало доминирование гравитации над другими имеющимися силами. Через 380 тыс. лет со времени Большого взрыва появился атом водорода. Увеличение влияния гравитации послужило окончанием начального периода формирования Вселенной и дало старт процессу возникновения первых звездных систем.

Даже спустя почти 14 млрд. лет в космосе все еще сохранилось реликтовое излучение. Его существование в комплексе с красным смещением приводится как аргумент в подтверждение состоятельности теории Большого взрыва.

Космологическая сингулярность

Если, используя общую теорию относительности и факт непрерывного расширения Вселенной, вернутся к началу времени, то размеры мироздания будут равны нулю. Начальный момент или наука не может достаточно точно описать, используя физические знания. Применяемые уравнения, не подходят для столь малого объекта. Необходим симбиоз, способный соединить квантовую механику и общую теорию относительности, но он, к сожалению, пока еще не создан.

Эволюция Вселенной: что ее ожидает в будущем?

Ученые рассматривают два возможных варианта развития событий: расширение Вселенной никогда не закончится, или же она достигнет критической точки и начнется обратный процесс – сжатие. Этот основополагающий выбор зависит от величины средней плотности вещества, находящегося в ее составе. Если вычисленное значение меньше критического, прогноз благоприятный, если больше, то мир вернется к сингулярному состоянию. Ученые в настоящее время не знают точной величины описываемого параметра, поэтому вопрос о будущем Вселенной завис в воздухе.

Отношение религии к теории Большого взрыва

Основные вероисповедания человечества: католицизм, православие, мусульманство, по-своему поддерживают эту модель сотворения мира. Либеральные представители этих религиозных конфессий соглашаются с теорией возникновения мироздания в результате некоего необъяснимого вмешательства, определяемого как Большой взрыв.

Знакомое всему миру имя теории – «Большой взрыв» – было невольно подарено противником версии о расширении Вселенной Хойлом. Он считал такую идею «совершенно неудовлетворительной». После публикации его тематической лекций занятный термин тут же подхватила общественность.

Причины, вызвавшие Большой взрыв, достоверно неизвестны. По одной из многочисленных версий, принадлежащей А. Ю. Глушко, сжатое в точку исходное вещество было черной гипер-дырой, а причиной взрыва стал контакт двух таких объектов, состоящих из частиц и античастиц. При аннигиляции материя частично уцелела и дала начало нашей Вселенной.

Инженеры Пензиас и Уилсон, открывшие реликтовое излучение Вселенной, получили Нобелевские премии по физике.

Показатели температуры реликтового излучения изначально было очень высоким. Спустя несколько миллионов лет этот параметр оказался в пределах, обеспечивающих зарождение жизни. Но к этому периоду успело сформироваться лишь небольшое количество планет.

Астрономические наблюдения и исследования помогают найти ответы на важнейшие для человечества вопросы: «Как все появилось, и что ждет нас в будущем?». Вопреки тому, что не все проблемы решены, и первопричина появления Вселенной не имеет строгого и стройного разъяснения, теория Большого взрыва обрела достаточное количество подтверждений, делающих ее основной и приемлемой моделью возникновения мироздания.

Открываем новую рубрику «Интеллектуальный час» - для тех, кто любит науку. Мы будем рассказывать о том, как устроена Вселенная и какие процессы в ней происходят, о секретах физики и астрофизики, математики, статистики, психологии и философии, об искусственном интеллекте. Если ваш ум радуется от слов «знания», «репрезентативность», «черное тело», «уравнение», «нетранзитивный» и «кванты» - эта рубрика для вас.

Сегодня узнаем чуточку больше о Большом взрыве, реликтовом излучении и инфляции, «раздувании», Вселенной: лектором будет Джон Гриббин, астрофизик из Великобритании, автор научно-популярной литературы о квантовой физике, эволюции, происхождении Вселенной, климатических изменениях и других темах, в том числе недавно вышедшей на русском языке книги «13.8. В поисках истинного возраста Вселенной и теории всего» .

Реликтовое излучение. Начало

Первым спутником Земли, запущенным специально для изучения реликтового излучения еще в 1983 году, стал советский «РЕЛИКТ-1». Он доказал осуществимость подобных миссий, но был недостаточно чувствительным, чтобы подтвердить неоднородность излучения в разных точках неба. А сделать это было необходимо, ведь если излучение действительно было отзвуком Большого взрыва, оно должно хранить следы колебаний ранних дней Вселенной, которая развивалась, порождая галактики, которые мы видим сегодня.

К началу 1980-х годов космологов уже тревожила кажущаяся излишняя равномерность реликтового излучения: вытекавшая из нее плоскостность Вселенной - баланс между расширением и сжатием - казалась слишком идеальной моделью.

Критическая плотность, необходимая для плоскостности Вселенной, должна меняться со временем (она неодинакова для разных космических эпох). Уравнения Эйнштейна говорят нам, что если вселенная рождена из Большого взрыва и ее плотность чуть-чуть больше необходимой для плоской модели, то это отклонение со временем будет возрастать, поскольку наличие излишней материи станет замедлять расширение и поддерживать высокую плотность пространства.

И наоборот, если изначально плотность вселенной чуть меньше критической, эта разница начнет увеличиваться в другую сторону, заставляя материю распределяться все менее и менее плотно. Абсолютная плоскостность - наименее вероятная модель из всех возможных.

Проблема №1, или Еще кое-что о Вселенной

Хотя все и раньше знали об этой проблеме, никто не придавал ей большого значения до тех пор, пока Роберт Дикке и Джим Пиблс, два принстонских исследователя, занимавшихся обнаружением реликтового излучения в середине 1960-х годов, в конце 1970-х не привлекли к ней внимание ученых.

В попытках объяснить плоскостность современной Вселенной, ранее исследователи пришли к выводу, что плотность во время Большого взрыва должна была составлять не более одной квадриллионной (1/10 в 15 степени) от критической плотности для того времени. Было очевидно, что этот показатель может сообщить нам нечто важное о рождении Вселенной, но никто не знал, что именно, - вплоть до 6 декабря 1979 года.

Алан Гут, американский физик и космолог, впервые предложивший идею космической инфляции, молодой исследователь из Корнелльского университета, весной того же года присутствовал на лекции Дикке о проблеме плоской Вселенной. Заинтригованный этой загадкой мироздания, он все время держал ее в голове и старался читать о космологии как можно больше.

Знания о физике частиц стали увязываться в его голове с космологическими данными, и 6 декабря после обсуждения любимой темы с приехавшим из Гарварда Сидни Коулманом его осенило.

Он просидел за рабочим столом до утра и в пятницу, 7 декабря 1979 года, внес в записную книжку под громким заголовком «ПОТРЯСАЮЩЕЕ ПРОЗРЕНИЕ» свое действительно важное открытие.

Он понимал, что натолкнулся на нечто очень важное. Гут понял, что при создании Вселенной в первую долю секунды произошел процесс, называемый нарушением симметрии, и в его рамках - фазовый переход, подобный тому, как пар конденсируется в воду и выделяет энергию. Именно мощное выделение энергии запустило процесс стремительного расширения - Гут назвал его инфляцией, буквально «раздуванием», - закончившийся . (Инфляцию часто включают в понятие Большого взрыва, но важно понимать, что она предшествовала ему.)

Инфляция Вселенной

Как это происходило? Давайте рассмотрим подробнее. В процессе раздувания размер Вселенной увеличивался по экспоненте, удваиваясь каждую 10 в минус 38 степени долю секунды, то есть все в наблюдаемой нами Вселенной «надулось» из некоего первичного состояния в миллиард раз меньше протона до размера баскетбольного мяча примерно за 10 в минус 30 степени секунды (при этой скорости за примерно такой же срок теннисный мячик мог бы увеличиться до размеров видимого космоса). И только тогда произошел Большой взрыв. Эту идею дальше развил американец русского происхождения Андрей Линде и другие исследователи.

Видимая нами Вселенная столь однородна потому, что она образовалась из столь крохотного состояния, в котором не было условий для разницы плотностей.

Эта модель также решает и проблему плоскостности: инфляция уплощает Вселенную таким же образом, как становится плоской поверхность надуваемого шарика или любой другой растущей сферы. Поверхность теннисного мячика, представляющая собой двухмерный объект, обернутый вокруг третьего измерения, явно имеет круглую форму, но если мы надуем его до размеров видимой Вселенной и попытаемся исследовать его поверхность, то никакие измерения не смогут заметить ее отклонение от плоскостности.

То же происходит и с реальной Вселенной, только в трех, а не в двух измерениях (Такая модель также предлагает решение проблемы горизонта, поскольку далеко разнесенные части Вселенной оказываются связанными ранее, но разделенными сверхбыстрым растяжением пространства. Это растяжение происходило в определенном смысле быстрее скорости света, но ничто не может двигаться через пространство быстрее света. Это убедительное доказательство существования инфляции обнаружил Сэндидж, а затем оно было подтверждено наблюдениями.)

Само же первичное состояние в рамках этой модели может объясняться так называемой квантовой флуктуацией - небольшим искажением ткани пространственно-временного континуума, которое не успело исчезнуть и подверглось инфляции.

Квантовые флуктуации и Большой взрыв

В довершение всего во время инфляции в зарождающейся Вселенной возникают новые квантовые флуктуации, которые тоже подвергаются инфляции, оставляя рябь на структуре материи, с которой затем происходит Большой взрыв. Эта рябь, часто именуемая анизотропией, становится зачатком таких структур, как галактики (точнее, скопления и сверхскопления галактик), и она должна была оставить свой след в реликтовом излучении.

Если попытаться отследить историю Вселенной, основываясь на флуктуациях наблюдаемого сегодня излучения, надо ориентироваться на разницу в температуре этого излучения в разных частях неба.

Эта температура составляет примерно одну стотысячную часть, то есть для температуры около 2,7 К колебания составят 土0,00003 К. Если же идти от теории инфляции, можно предсказать, где именно на небе будут видны следы этих «раздутых» квантовых флуктуаций. Инфляция должна была оставить на небосклоне явный отпечаток, если только у нас есть достаточно точные датчики, чтобы уловить его. Неудивительно, что «РЕЛИКТ-1» (кстати, «РЕЛИКТ-2» так и не был запущен) не сумел зафиксировать эти тончайшие отклонения. Но уже у следующего спутника, запущенного для изучения реликтового излучения, были более чувствительные датчики.

Еще больше об Вселенной, определении ее возраста и реликтовом излучении Джон Гриббин рассказывает в своей книге: детально и без лишних упрощений.

P.S. Если вы любите науку, присоединяйтесь к сообществам МИФ.Научпоп в

Говорят, что время – самая загадочная материя. Человек, сколько не пытается понять его законы и научиться управлять ими, всякий раз попадает впросак. Делая последний шаг к разгадке великой тайны, и считая, что она, практически, уже у нас в кармане, мы всякий раз убеждаемся, что она все так же неуловима. Однако человек – существо пытливое и поиск ответов на извечные вопросы для многих становится смыслом жизни.

Одной из таких тайн стало сотворение мира. Последователи «теории Большого взрыва», логично объясняющей происхождение жизни на Земле стали задаваться вопросом о том, что было до Большого взрыва, и было ли что-нибудь вообще. Тема для исследований благодатная, а результаты могут заинтересовать широкую общественность.

У всего на свете есть прошлое – у Солнца, Земли, Вселенной, но откуда взялось все это многообразие и что было до него?

Дать однозначный ответ вряд ли возможно, но выдвинуть гипотезы и поискать им доказательства вполне реально. В поисках истины, исследователи получили не один, а несколько ответов на вопрос «что было до Большого взрыва?». Самый популярный из них звучит несколько обескураживающе и довольно смело – Ничего. Возможно ли, что все сущее произошло из ничего? Что Ничто породило все существующее?

Собственно, это нельзя назвать абсолютной пустотой и там все равно происходят какие-то процессы? Все было порождено ничем? Ничто – полное отсутствие не только материи, молекул и атомов, но даже времени и пространства. Богатая почва для деятельности писателей-фантастов!

Мнения ученых об эпохе до Большого взрыва

Однако Ничто нельзя потрогать, к нему не применимы обычные законы, а значит, либо домысливать и выстраивать теории, либо попытаться создать условия, близкие к тем, в результате которых произошел Большой взрыв, и убедиться в правильности своих предположений. В специальных камерах, из которых были удалены частицы вещества, понизили температуру, приблизив к условиям космоса. Результаты наблюдений дали косвенные подтверждения научным теориям: ученые изучали среду, в которой теоретически мог возникнуть Большой взрыв, но назвать эту среду «Ничто» оказалось не совсем корректно. Происходящие мини-взрывы могли бы привести к более масштабному взрыву, породившему Вселенную.

Теории вселенных до Большого взрыва

Приверженцы иной теории утверждают, что до Большого взрыва существовали две другие Вселенные, развивавшиеся по собственным законам. Какими именно они были – ответить сложно, но согласно выдвигаемой теории, Большой взрыв произошел в результате их столкновения и привел к полному уничтожению прежних Вселенных и, одновременно, к рождению нашей, существующей и ныне.

Теория «сжатия» говорит о том, что Вселенная существует, и существовала всегда, меняются лишь условия ее развития, которые приводят к исчезновению жизни в одном регионе и возникновению в другом. Жизнь исчезает в результате «схлопывания» и возникает после взрыва. Как бы парадоксально это не звучало. Такая гипотеза имеет большое количество сторонников.

Есть еще одно предположение: в результате Большого взрыва из небытия возникла новая Вселенная и раздулась, словно мыльный пузырь, до гигантских размеров. В это время от нее отпочковывались «пузырьки», которые впоследствии, стали другими Галактиками и Вселенными.

Теория «естественного отбора» предполагает, что речь идет о «естественном космическом отборе», вроде того, о котором вещал Дарвин, только в более крупных размерах. У нашей Вселенной был свой предок, у него, в свою очередь, так же имелся свой предок. Согласно этой теории, нашу Вселенную породила Черная дыра. и представляют большой интерес для ученых. По этой теории для того, чтобы появилась новая Вселенная, необходимы механизмы «размножения». Таким механизмом и становится Черная дыра.

А может быть, правы те, кто считает, что по мере роста и развития наша Вселенная расширяется, идя навстречу Большому взрыву, который станет началом для новой Вселенной. Значит, когда-то давно, неизвестная и, увы, исчезнувшая Вселенная стала прародительницей нашей новой вселенной. Цикличность этой системы выглядит логично и приверженцев у данной теории немало.

До какой степени приблизились к истине последователи той или иной гипотезы – сказать сложно. Каждый выбирает то, что ближе по духу и пониманию. Религиозный мир дает на все вопросы свои ответы и укладывает картину создания мира в божественные рамки. Атеисты ищут ответы, стремясь докопаться до сути и потрогать своими руками эту самую суть. Можно удивиться, чем вызвано такое упорство в поисках ответа на вопрос о том, что было до Большого взрыва, ведь практическую пользу из этого знания извлечь довольно проблематично: человек не станет властелином Вселенной, по его слову и желанию не зажгутся новые звезды и не погаснут существующие. Но ведь так интересно то, что не изучено! Человечество бьется над разгадками тайн, и кто знает, быть может, рано или поздно, они дадутся человеку в руки. Вот только, как он этими тайными знаниями воспользуется?

Иллюстрации: КЛАУС БАХМАНН, журнал «GEO»

(25 votes, average: 4,84 out of 5)



Все слышали о теории Большого взрыва, которая объясняет (по крайней мере, на данный момент) зарождение нашей Вселенной. Однако в ученых кругах всегда найдутся желающие оспорить идеи - из этого, кстати, нередко и вырастают великие открытия.

Однако, понял Дикке, если бы эта модель была реальной, то не было бы двух видов звезд - Населения I и Населения II, молодых и старых звезд. А они были. Значит, Вселенная вокруг нас все-таки развилась из горячего и плотного состояния. Даже если это был не единственный в истории Большой взрыв.

Удивительно, правда? Вдруг этих взрывов было несколько? Десятки, сотни? Науке еще предстоит это выяснить. Дикке предложил своему коллеге Пиблсу просчитать необходимую для описанных процессов температуру и вероятную температуру остаточного излучения в наши дни. Примерные расчеты Пиблса показали, что сегодня Вселенная должна быть наполнена микроволновым излучением с температурой менее 10 К, и Ролл с Уилкинсоном уже готовились искать это излучение, когда раздался звонок…

Трудности перевода

Однако тут стоит перенестись в другой уголок земного шара - в СССР. Ближе всех к открытию реликтового излучения подошли (и тоже не довели дело до конца!) в СССР. Проделав в течение нескольких месяцев огромную работу, отчет о которой вышел в 1964 году, советские ученые сложили, казалось, все части головоломки, не хватило лишь одной. Яков Борисович Зельдович, один из колоссов советской науки, осуществил расчеты, аналогичные тем, что провел коллектив Гамова (советского физика, живушего в США), и тоже пришел к выводу, что Вселенная должна была начаться с горячего Большого взрыва, оставившего фоновое излучение с температурой в несколько кельвинов.

Яков Борисович Зельдович, –

Он даже знал о статье Эда Ома в «Техническом журнале Bell System», который примерно высчитал температуру реликтового излучения, но неверно интерпретировал выводы автора. Почему же советские исследователи не поняли, что Ом уже открыл это излучение? Из-за ошибки в переводе. В статье Ома утверждалось, что измеренная им температура неба составила около 3 К. Это означало, что он вычел все возможные источники радиопомех и что 3 К - это температура оставшегося фона.

Однако по случайному совпадению такой же (3 К) была и температура излучения атмосферы, поправку на которую Ом тоже сделал. Советские специалисты ошибочно решили, что именно эти 3 К и остались у Ома после всех предыдущих корректировок, вычли и их и остались ни с чем.

В наши дни подобные ошибки понимания легко устранились бы в процессе электронной переписки, но в начале 1960-х годов коммуникация между учеными Советского Союза и Соединенных Штатов была весьма затруднена. Это и стало причиной столь обидной ошибки.

Нобелевская премия, которая уплыла из рук

Вернемся в день, когда в лаборатории Дикке раздался телефонный звонок. Оказывается, в это же время астрономы Арно Пензиас и Роберт Вильсон сообщили, что им случайно удалось уловить слабый радиошум, поступающий из всего . Тогда они еще не знали, что другой коллектив ученых самостоятельно пришел к идее существования такого излучения и даже начал строить детектор для его поиска. Это был коллектив Дикке и Пиблса.

Еще удивительнее и то, что космическое микроволновое фоновое, или, как его еще называют, реликтовое, излучение было более чем за десять лет до этого описано в рамках модели возникновения Вселенной в результате Большого взрыва Георгием Гамовым и его коллегами. Ни одна, ни другая группа ученых об этом не знала.

Пензиас и Вильсон случайно узнали о работе ученых под руководством Дикке и решили им позвонить, чтобы обсудить это. Дикке внимательно выслушал Пензиаса и сделал несколько замечаний. Положив трубку, он повернулся к коллегам и сказал: «Ребята, нас обскакали».

Спустя почти 15 лет, после того как множество измерений, произведенных на самых разных длинах волн многими группами астрономов, подтвердили, что открытое ими излучение действительно реликтовое эхо Большого взрыва, имеющее температуру 2,712 К, Пензиас и Вильсон разделили Нобелевскую премию за свое изобретение. Хотя поначалу они даже не хотели писать статью о своем открытии, потому что считали его несостоятельным и не укладывающимся в модель стационарной Вселенной, которой они придерживались!

Говорят, Пензиас и Вильсон сочли бы для себя достаточным упоминание в качестве пятого и шестого имени в списке после Дикке, Пиблса, Ролла и Уилкинсона. В таком случае Нобелевская премия, видимо, ушла бы Дикке. Но все случилось так, как случилось.

P.S.: Подписывайтесь на нашу рассылку . Раз в две недели будем присылать 10 самых интересных и полезных материалов из блога МИФ.

Согласно данной теории Вселенная появилась в виде горячего сгустка сверхплотной материи, после чего она начала расширяться и остывать. На самом первом этапе эволюции Вселенная находилась в сверхплотном состоянии и представляла собой -глюонную плазму. Если протоны и нейтроны сталкивались и образовывали более тяжелые ядра, время их существования было ничтожно мало. При следующем столкновении с какой-либо быстрой частицей они сразу же распадались на элементарные компоненты.

Примерно 1 миллиард лет назад началось формирование галактик, в тот момент Вселенная стала отдаленно напоминать то, что мы можем увидеть сейчас. Через 300 тысяч лет после Большого взрыва она настолько остыла, что электроны стали прочно удерживаться ядрами, вследствие чего появились стабильные атомы, которые не распадались сразу же после соударения с другим ядром.

Образование частиц

Образование частиц началось в результате расширения Вселенной. Ее дальнейшее охлаждение привело к образованию ядер гелия, которое произошло в результате первичного нуклеосинтеза. С момента Большого взрыва должно было пройти около трех минут, прежде чем Вселенная остыла, а энергия соударения уменьшалась настолько, что частицы стали образовывать устойчивые ядра. В первые три минуты Вселенная представляла собой раскаленное море элементарных частиц.

Первичное образование ядер продолжалось очень недолго, после первых трех минут частицы отдались друг от друга так, что столкновения между ними стали крайне редки. В этот короткий период первичного нуклеосинтеза появился дейтерий - тяжелый изотоп водорода, ядро которого содержит один протон и один . Одновременно с дейтерием образовались: гелий-3, гелий-4 и незначительное количество лития-7. Все более тяжелые элементы появились на стадии формирования звезд.

После рождения Вселенной

Примерно через одну стотысячную долю секунды от начала зарождения Вселенной кварки соединились в элементарные частицы. С этого момента Вселенная стала остывающим морем элементарных частиц. Вслед за этим начался процесс, который называют великим объединением фундаментальным сил. Тогда во Вселенной присутствовали энергии, соответствующие максимальным энергиям, которые могут быть получены в современных ускорителях. После началось скачкообразное инфляционное расширение, одновременно с ним исчезли античастицы.

Источники:

  • Элементы, Большой взрыв
  • Элементы, Ранняя Вселенная

Одним из направлений естественных наук, лежащих на границе физики, математики и отчасти даже богословия, является разработка и исследование теорий возникновения Вселенной. На сегодняшний день ученые предложили несколько космологических моделей, концепция Большого взрыва является общепринятой.

Сущность теории и последствия взрыва

Согласно теории Большого взрыва, Вселенная перешла из так называемого сингулярного состояния в состояние постоянного расширения в результате всеобщего взрыва какого-то вещества небольшого размера и высокой температуры. Взрыв был такого масштаба, что каждая частница материи стремилась удалиться от другой. Расширение Вселенной подразумевает привычные всем категории трехмерного пространства, до взрыва, очевидно, их не существовало.

До самого взрыва выделяют несколько этапов: Планковская эпоха (самая ранняя), эпоха Великого объединения (время электроядерных сил и гравитации) и, наконец, Большой взрыв.

Вначале образовались фотоны (излучение), затем частицы вещества. В течение первой же секунды из этих частиц образовались протоны, антипротоны и нейтроны. После этого стали частыми реакции аннигиляции, так Вселенной было очень плотным, частицы непрерывно между собою сталкивались.

На второй секунде, когда Вселенная остыла до 10 млрд градусов, образовались и некоторые другие элементарные частицы, например, электрон и позитрон. К тому же временному отрезку большая часть частиц аннигилировала. Частиц вещества было минимально больше, чем частиц антивещества. Поэтому наша Вселенная состоит из материи, а не из .

Через три минуты всех протонов и нейтронов превратились в ядра гелия. Через сотни тысяч лет постоянно расширяющаяся Вселенная значительно остыла, ядра гелия и протоны уже могли удерживать в себе электроны. Таким образом образовались атомы гелия и водорода. Вселенная стала менее «тесной». Излучение смогло распространяться на значительные расстояния. До сих пор на Земле можно «услышать» эхо того излучения. Его принято называть реликтовым. Обнаружение и существование реликтового излучения подтверждают концепцию Большого взрыва, это микроволновое излучение.

Постепенно при расширении в тех или иных местах однородной Вселенной образовывались случайные сгущения. Именно они стали предтечами больших уплотнений и точками концентрации вещества. Так во Вселенной образовались области, где вещества почти не было, и области, где его было много. Сгустки вещества увеличивались под действием гравитации. В таких местах постепенно стали образовываться галактики, скопления и сверхскопления галактик.

Критика

В конце двадцатого века концепция Большого Взрыва стала практически общепринятой в космологии. Тем не менее, существует множество критических замечаний и дополнений. Например, самым спорным положением концепции является проблема причин возникновения взрыва. Кроме того, некоторые ученые не соглашаются с идеей расширяющейся Вселенной. Интересно, что разные религии в целом положительно восприняли концепцию, обнаружив даже указания на Большой взрыв в Священных