Педагогика

Структурные уровни организации неживой материи мегамир. Основные структурные уровни материи. Структурные уровни материи Микромир, Макромир, Мегамир

1. Структурные уровни организации материи

В самом общем виде материя представляет собой бесконечное множество всех сосуществующих в мире объектов и систем, совокупность их свойств, связей, отношений и форм движения. При этом она включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все то, что не дано нам в ощущениях. Весь окружающий нас мир - это движущаяся материя в ее бесконечно разнообразных формах и проявлениях, со всеми свойствами, связями и отношениями. В этом мире все объекты обладают внутренней упорядоченностью и системной организацией. Упорядоченность проявляется в закономерном движении и взаимодействии всех элементов материи, благодаря чему они объединяются в системы. Весь мир, таким образом, предстает как иерархически организованная совокупность систем, где любой объект одновременно является самостоятельной системой и элементом другой, более сложной системы.

Согласно современной естественно-научной картине мира все природные объекты также представляют собой упорядоченные, структурированные, иерархически организованные системы. Исходя из системного подхода к природе вся материя делится на два больших класса материальных систем - неживую и живую природу. В системе неживой природы структурными элементами являются: элементарные частицы, атомы, молекулы, поля, макроскопические тела, планеты и планетные системы, звезды и звездные системы, галактики, метагалактики и Вселенная в целом. Соответственно в живой природе основными элементами выступают белки и нуклеиновые кислоты, клетка, одноклеточные и многоклеточные организмы, органы и ткани, популяции, биоценозы, живое вещество планеты.

В то же время как неживая, так и живая материя включают в себя ряд взаимосвязанных структурных уровней. Структура - это совокупность связей между элементами системы. Поэтому любая система состоит не только из подсистем и элементов, но и из разнообразных связей между ними. Внутри этих уровней главными являют ся горизонтальные (координационные) связи, а между уровнями - вертикальные (субординационные). Совокупность горизонтальных и вертикальных связей позволяет создать иерархическую структуру Вселенной, в которой основным квалификационным признаком является размер объекта и его масса, а также их соотношение с человеком. На основе этого критерия выделяют следующие уровни материи: микромир, макромир и мегамир.

Микромир - область предельно малых, непосредственно ненаблюдаемых материальных микрообъектов, пространственная размерность которых исчисляется в диапазоне от 10 -8 до 10 -16 см, а время жизни - от бесконечности до 10 -24 с. Сюда относятся поля, элементарные частицы, ядра, атомы и молекулы.

Макромир - мир материальных объектов, соизмеримых по своим масштабам с человеком и его физическими параметрами. На этом уровне пространственные величины выражаются в миллиметрах, сантиметрах, метрах и километрах, а время - в секундах, минутах, часах, днях и годах. В практической действительности макромир представлен макромолекулами, веществами в различных агрегатных состояниях, живыми организмами, человеком и продуктами его деятельности, т.е. макротелами.

Мегамир - сфера огромных космических масштабов и скоростей, расстояние в которой измеряется астрономическими единицами, световыми годами и парсеками, а время существования космических объектов - миллионами и миллиардами лет. К этому уровню материи относятся наиболее крупные материальные объекты: звезды, галактики и их скопления.

На каждом из этих уровней действуют свои специфические закономерности, несводимые друг к другу. Хотя все эти три сферы мира теснейшим образом связаны между собой.

Структура мегамира

Основными структурными элементами мегамира являются планеты и планетные системы; звезды и звездные системы, образующие галактики; системы галактик, образующие метагалактики.

Планеты - несамосветящиеся небесные тела, по форме близкие к шару, вращающиеся вокруг звезд и отражающие их свет. В силу близости к Земле наиболее изученными являются планеты Солнечной системы, двигающиеся вокруг Солнца по эллиптическим орбитам. К этой группе планет относится и наша Земля, расположенная от Солнца на расстоянии 150 млн. км.

Звезды - светящиеся (газовые) космические объекты, образующиеся из газово-пылевой среды (преимущественно водорода и гелия) в результате гравитационной конденсации. Звезды удалены друг от друга на огромные расстояния и тем самым изолированы друг от друга. Это означает, что звезды практически не сталкиваются друг с другом, хотя движение каждой из них определяется силой тяготения, создаваемой всеми звездами Галактики. Число звезд в Галактике - порядка триллиона. Самые многочисленные из них - карлики, массы которых примерно в 10 раз меньше массы Солнца. В зависимости от массы звёзды в процессе эволюции становятся либо белыми карликами, либо нейтронными звездами, либо черными дырами.

Белый карлик - это электронная постзвезда, образующаяся в том случае, когда звезда на последнем этапе своей эволюции имеет массу, меньшую 1,2 солнечной массы. Диаметр белого карлика равен диаметру нашей Земли, температура достигает около миллиарда градусов, а плотность - 10 т/см 3 , т.е. в сотни раз больше земной плотности.

Нейтронные звезды возникают на заключительной стадии эволюции звезд, обладающих массой от 1,2 до 2 солнечных масс. Высокие температура и давление в них создают условия для образования большого количества нейтронов. В этом случае происходит очень быстрое сжатие звезды, в ходе которого в наружных ее слоях начинается бурное протекание ядерных реакций. При этом выделяется так много энергии, что происходит взрыв с разбросом наружного слоя звезды. Внутренние же ее области стремительно сжимаются. Оставшийся объект и получил название нейтронной звезды, поскольку он состоит из протонов и нейтронов. Нейтронные звезды также называют пульсарами.

Черные дыры - это звезды, находящиеся на заключительном этапе своего развития, масса которых превышает 2 солнечные массы, и имеющие диаметр от 10 до 20 км. Теоретические расчеты показали, что они обладают гигантской массой (10 15 г) и аномально сильным гравитационным полем. Свое название они получили потому, что не обладают свечением, а за счет своего гравитационного поля захватывают из пространства все космические тела и излучение, которые не могут выйти из них обратно, они как бы проваливаются в них (затягиваются, как в дыру). Из-за сильной гравитации никакое захваченное материальное тело не может выйти за пределы гравитационного радиуса объекта, и поэтому они кажутся наблюдателю «черными».

Звездные системы (звездные скопления) - группы звезд, связанные между собой силами тяготения, имеющие совместное происхождение, сходный химический состав и включающие в себя до сотен тысяч отдельных звезд. Существуют рассеянные звездные системы, например Плеяды в созвездии Тельца. Такие системы не имеют правильной формы. В настоящее время известно более тысячи

звездных систем. Кроме того, к звездным системам относятся шаровые звездные скопления, насчитывающие в своем составе сотни тысяч звезд. Силы тяготения удерживают звезды в таких скоплениях миллиарды лет. В настоящее время ученым известно около 150 шаровых скоплений.

Галактики - совокупности звездных скоплений. Понятие «галактика» в современной интерпретации означает огромные звездные системы. Этот термин (от греч. «молоко, молочный») был введен в обиход для обозначения нашей звездной системы, представляющей собой тянущуюся через все небо светлую полосу с молочным оттенком и поэтому названную Млечным Путем.

Условно по внешнему виду галактики можно разделить на три вида. К первому (около 80%) относятся спиральные галактики. У этого вида отчетливо наблюдаются ядро и спиральные «рукава». Второй вид (около 17%) включает эллиптические галактики, т.е. такие, которые имеют форму эллипса. К третьему виду (примерно 3%) относятся галактики неправильной формы, которые не имеют отчетливо выраженного ядра. Кроме того, галактики различаются размерами, числом входящих в них звезд и светимостью. Все галактики находятся в состоянии движения, причем расстояние между ними постоянно увеличивается, т.е. происходит взаимное удаление (разбегание) галактик друг от друга.

Наша Солнечная система принадлежит к галактике Млечного Пути, включающей не менее 100 млрд. звезд и поэтому относящейся к разряду гигантских галактик. Она имеет сплюснутую форму, в центре которой находится ядро с отходящими от него спиральными «рукавами». Диаметр нашей Галактики составляет около 100 тыс., а толщина - 10 тыс. световых лет. Соседней с нами является галактика Туманность Андромеды.

Метагалактика - система галактик, включающая все известные космические объекты.

Поскольку мегамир имеет дело с большими расстояниями, то для измерения этих расстояний разработаны следующие специальные единицы:

световой год - расстояние, которое проходит луч света в течение одного года со скоростью 300 000 км/с, т.е. световой год составляет 10 трлн км;

астрономическая единица - это среднее расстояние от Земли до Солнца, 1 а.е. равна 8,3 световым минутам. Это значит, что солнечные лучи, оторвавшись от Солнца, достигают Земли через 8,3 мин;

парсек - единица измерения космических расстояний внутри звездных систем и между ними. 1пк - 206 265 а.е., т.е. приблизительно равен 30 трлн км, или 3,3 световым года.

Структура макромира

Каждый структурный уровень материи в своем развитии подчиняется специфическим законам, но при этом между этими уровнями нет строгих и жестких границ, все они теснейшим образом связаны между собой. Границы микро- и макромира подвижны, не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты построены из микрообъектов. Тем не менее, выделим важнейшие объекты макромира.

Центральным понятием макромира является понятие вещества, которое в классической физике, являющейся физикой макромира, отделяют от поля. Под веществом понимают вид материи, обладающий массой покоя. Оно существует для нас в виде физических тел, которые обладают некоторыми общими параметрами - удельной массой, температурой, теплоемкостью, механической прочностью или упругостью, тепло- и электропроводностью, магнитными свойствами и т.п. Все эти параметры могут изменяться в широких пределах как от одного вещества к другому, так и для одного и того же вещества в зависимости от внешних условий.

Структура микромира

На рубеже XIX-XX вв. в естественно-научной картине мира произошли радикальные изменения, вызванные новейшими научными открытиями в области физики и затронувшие ее основополагающие идеи и установки. В результате научных открытий были опровергнуты традиционные представления классической физики об атомной структуре вещества. Открытие электрона означало утрату атомом статуса структурно неделимого элемента материи и тем самым коренную трансформацию классических представлений об объективной реальности. Новые открытия позволили:

выявить существование в объективной реальности не только макро-, но и микромира;

подтвердить представление об относительности истины, являющейся только ступенькой на пути познания фундаментальных свойств природы;

доказать, что материя состоит не из «неделимого первоэлемента» (атома), а из бесконечного многообразия явлений, видов и форм материи и их взаимосвязей.

Концепция элементарных частиц. Переход естественно-научных знаний с атомного уровня на уровень элементарных частиц привел ученых к заключению, что понятия и принципы классической физики оказываются неприменимыми к исследованию физических свойств мельчайших частиц материи (микрообъектов), таких, как электроны, протоны, нейтроны, атомы, которые образуют невидимый нами микромир. В силу особых физических показателей свойства объектов микромира совершенно не похожи на свойства объектов привычного нам макромира и далекого мегамира. Отсюда возникла необходимость отказа от привычных представлений, которые навязаны нам предметами и явлениями макромира. Поиски новых способов описания микрообъектов способствовали созданию концепции элементарных частиц.

Согласно этой концепции основными элементами структуры микромира выступают микрочастицы материи, которые не являются ни атомами, ни атомными ядрами, не содержат в себе каких-либо других элементов и обладают наиболее простыми свойствами. Такие частицы были названы элементарными, т.е. самыми простыми, не имеющими в себе никаких составных частей.

После того как было установлено, что атом не является последним «кирпичиком» мироздания, а построен из более простых элементарных частиц, их поиск занял главное место в исследованиях физиков. История открытия фундаментальных частиц началась в конце XIX в., когда в 1897 г. английский физик Дж. Томсон открыл первую элементарную частицу - электрон. История открытия всех известных сегодня элементарных частиц включает два этапа.

Первый этап приходится на 30-50-е гг. XX в. К началу 1930-х гг. были открыты протон и фотон, в 1932 г. - нейтрон, а спустя четыре года - первая античастица - позитрон, которая по массе равна электрону, но имеет положительный заряд. К концу этого периода стало известно о 32 элементарных частицах, причем каждая новая частица была связана с открытием принципиально нового круга физических явлений.

Второй этап приходится на 1960-е гг., кода общее число известных частиц превысило 200. На этом этапе основным средством открытия и исследования элементарных частиц стали ускорители заряженных частиц. В 1970-80-е гг. поток открытий новых элементарных частиц усилился, и ученые заговорили о семействах элементарных частиц. На данный момент науке известно более 350 элементарных частиц, различающихся массой, зарядом, спином, временем жизни и еще рядом физических характеристик.

Все элементарные частицы обладают некоторыми общими свойствами. Одно из них - свойство корпускулярно-волнового дуализма, т.е. наличие у всех микрообъектов как свойств волны, так и свойств вещества.

Другим общим свойством является наличие почти у всех частиц (кроме фотона и двух мезонов) своих античастиц. Античастицы - это элементарные частицы, схожие с частицами по всем признакам, но отличающиеся противоположными знаками электрического за ряда и магнитного момента. После открытия большого числа античастиц ученые заговорили о возможности существования антивещества и даже антимира. При соприкосновении вещества с антивеществом происходит процесс аннигиляции - превращение частиц и античастиц в фотоны и мезоны больших энергий (вещество превращается в излучение).

Еще одним важнейшим свойством элементарных частиц является их универсальная взаимопревращаемость. Этого свойства нет ни в макро-, ни в мегамире.

Уровня организации материи (2)Реферат >> Биология

3 2. Триединство концептуальных уровней познания в современной биологии …………………………….….. 4 3. Структурные уровни организации живых систем ….. . 6 ... уровне организации материи . Живая природа (коротко - жизнь) - это такая форма организации материи на уровне ...

  • Особенности биологического уровня организации материи (1)

    Реферат >> Биология

    5. Структурные уровни живого. 6. Заключение. 7. Список литературы. Введение. Биологический уровень организации материи представлен... и др. Структурные уровни организации живого. Системно-структурные уровни организации многообразных форм живого достаточно...

  • Наследственность. Структурные уровни организации наследственного материала

    Реферат >> Биология

    Наследственность. Структурные уровни организации наследственного материала . Наследственность. Структурные уровни организации наследственного материала . Регуляция... Причина – серьезные препятствия: -организация генетического материала в форме хромосом - ...

  • 1. Структурные уровни организации материи

    В самом общем виде материя представляет собой бесконечное множество всех сосуществующих в мире объектов и систем, совокупность их свойств, связей, отношений и форм движения. При этом она включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все то, что не дано нам в ощущениях. Весь окружающий нас мир - это движущаяся материя в ее бесконечно разнообразных формах и проявлениях, со всеми свойствами, связями и отношениями. В этом мире все объекты обладают внутренней упорядоченностью и системной организацией. Упорядоченность проявляется в закономерном движении и взаимодействии всех элементов материи, благодаря чему они объединяются в системы. Весь мир, таким образом, предстает как иерархически организованная совокупность систем, где любой объект одновременно является самостоятельной системой и элементом другой, более сложной системы.

    Согласно современной естественно-научной картине мира все природные объекты также представляют собой упорядоченные, структурированные, иерархически организованные системы. Исходя из системного подхода к природе вся материя делится на два больших класса материальных систем - неживую и живую природу. В системе неживой природы структурными элементами являются: элементарные частицы, атомы, молекулы, поля, макроскопические тела, планеты и планетные системы, звезды и звездные системы, галактики, метагалактики и Вселенная в целом. Соответственно в живой природе основными элементами выступают белки и нуклеиновые кислоты, клетка, одноклеточные и многоклеточные организмы, органы и ткани, популяции, биоценозы, живое вещество планеты.

    В то же время как неживая, так и живая материя включают в себя ряд взаимосвязанных структурных уровней. Структура - это совокупность связей между элементами системы. Поэтому любая система состоит не только из подсистем и элементов, но и из разнообразных связей между ними. Внутри этих уровней главными являют ся горизонтальные (координационные) связи, а между уровнями - вертикальные (субординационные). Совокупность горизонтальных и вертикальных связей позволяет создать иерархическую структуру Вселенной, в которой основным квалификационным признаком является размер объекта и его масса, а также их соотношение с человеком. На основе этого критерия выделяют следующие уровни материи: микромир, макромир и мегамир.

    Микромир - область предельно малых, непосредственно ненаблюдаемых материальных микрообъектов, пространственная размерность которых исчисляется в диапазоне от 10 -8 до 10 -16 см, а время жизни - от бесконечности до 10-24 с. Сюда относятся поля, элементарные частицы, ядра, атомы и молекулы.

    Макромир - мир материальных объектов, соизмеримых по своим масштабам с человеком и его физическими параметрами. На этом уровне пространственные величины выражаются в миллиметрах, сантиметрах, метрах и километрах, а время - в секундах, минутах, часах, днях и годах. В практической действительности макромир представлен макромолекулами, веществами в различных агрегатных состояниях, живыми организмами, человеком и продуктами его деятельности, т.е. макротелами.

    Мегамир - сфера огромных космических масштабов и скоростей, расстояние в которой измеряется астрономическими единицами, световыми годами и парсеками, а время существования космических объектов - миллионами и миллиардами лет. К этому уровню материи относятся наиболее крупные материальные объекты: звезды, галактики и их скопления.

    На каждом из этих уровней действуют свои специфические закономерности, несводимые друг к другу. Хотя все эти три сферы мира теснейшим образом связаны между собой.

    Структура мегамира

    Основными структурными элементами мегамира являются планеты и планетные системы; звезды и звездные системы, образующие галактики; системы галактик, образующие метагалактики.

    Планеты - несамосветящиеся небесные тела, по форме близкие к шару, вращающиеся вокруг звезд и отражающие их свет. В силу близости к Земле наиболее изученными являются планеты Солнечной системы, двигающиеся вокруг Солнца по эллиптическим орбитам. К этой группе планет относится и наша Земля, расположенная от Солнца на расстоянии 150 млн. км.

    Звезды - светящиеся (газовые) космические объекты, образующиеся из газово-пылевой среды (преимущественно водорода и гелия) в результате гравитационной конденсации. Звезды удалены друг от друга на огромные расстояния и тем самым изолированы друг от друга. Это означает, что звезды практически не сталкиваются друг с другом, хотя движение каждой из них определяется силой тяготения, создаваемой всеми звездами Галактики. Число звезд в Галактике - порядка триллиона. Самые многочисленные из них - карлики, массы которых примерно в 10 раз меньше массы Солнца. В зависимости от массы звёзды в процессе эволюции становятся либо белыми карликами, либо нейтронными звездами, либо черными дырами.

    Белый карлик - это электронная постзвезда, образующаяся в том случае, когда звезда на последнем этапе своей эволюции имеет массу, меньшую 1,2 солнечной массы. Диаметр белого карлика равен диаметру нашей Земли, температура достигает около миллиарда градусов, а плотность - 10 т/см 3 , т.е. в сотни раз больше земной плотности.

    Нейтронные звезды возникают на заключительной стадии эволюции звезд, обладающих массой от 1,2 до 2 солнечных масс. Высокие температура и давление в них создают условия для образования большого количества нейтронов. В этом случае происходит очень быстрое сжатие звезды, в ходе которого в наружных ее слоях начинается бурное протекание ядерных реакций. При этом выделяется так много энергии, что происходит взрыв с разбросом наружного слоя звезды. Внутренние же ее области стремительно сжимаются. Оставшийся объект и получил название нейтронной звезды, поскольку он состоит из протонов и нейтронов. Нейтронные звезды также называют пульсарами.

    Черные дыры - это звезды, находящиеся на заключительном этапе своего развития, масса которых превышает 2 солнечные массы, и имеющие диаметр от 10 до 20 км. Теоретические расчеты показали, что они обладают гигантской массой (10 15 г) и аномально сильным гравитационным полем. Свое название они получили потому, что не обладают свечением, а за счет своего гравитационного поля захватывают из пространства все космические тела и излучение, которые не могут выйти из них обратно, они как бы проваливаются в них (затягиваются, как в дыру). Из-за сильной гравитации никакое захваченное материальное тело не может выйти за пределы гравитационного радиуса объекта, и поэтому они кажутся наблюдателю «черными».

    Звездные системы (звездные скопления) - группы звезд, связанные между собой силами тяготения, имеющие совместное происхождение, сходный химический состав и включающие в себя до сотен тысяч отдельных звезд. Существуют рассеянные звездные системы, например Плеяды в созвездии Тельца. Такие системы не имеют правильной формы. В настоящее время известно более тысячи

    звездных систем. Кроме того, к звездным системам относятся шаровые звездные скопления, насчитывающие в своем составе сотни тысяч звезд. Силы тяготения удерживают звезды в таких скоплениях миллиарды лет. В настоящее время ученым известно около 150 шаровых скоплений.

    Галактики - совокупности звездных скоплений. Понятие «галактика» в современной интерпретации означает огромные звездные системы. Этот термин (от греч. «молоко, молочный») был введен в обиход для обозначения нашей звездной системы, представляющей собой тянущуюся через все небо светлую полосу с молочным оттенком и поэтому названную Млечным Путем.

    Условно по внешнему виду галактики можно разделить на три вида. К первому (около 80%) относятся спиральные галактики. У этого вида отчетливо наблюдаются ядро и спиральные «рукава». Второй вид (около 17%) включает эллиптические галактики, т.е. такие, которые имеют форму эллипса. К третьему виду (примерно 3%) относятся галактики неправильной формы, которые не имеют отчетливо выраженного ядра. Кроме того, галактики различаются размерами, числом входящих в них звезд и светимостью. Все галактики находятся в состоянии движения, причем расстояние между ними постоянно увеличивается, т.е. происходит взаимное удаление (разбегание) галактик друг от друга.

    Наша Солнечная система принадлежит к галактике Млечного Пути, включающей не менее 100 млрд. звезд и поэтому относящейся к разряду гигантских галактик. Она имеет сплюснутую форму, в центре которой находится ядро с отходящими от него спиральными «рукавами». Диаметр нашей Галактики составляет около 100 тыс., а толщина - 10 тыс. световых лет. Соседней с нами является галактика Туманность Андромеды.

    Метагалактика - система галактик, включающая все известные космические объекты.

    Поскольку мегамир имеет дело с большими расстояниями, то для измерения этих расстояний разработаны следующие специальные единицы:

    световой год - расстояние, которое проходит луч света в течение одного года со скоростью 300 000 км/с, т.е. световой год составляет 10 трлн км;

    астрономическая единица - это среднее расстояние от Земли до Солнца, 1 а.е. равна 8,3 световым минутам. Это значит, что солнечные лучи, оторвавшись от Солнца, достигают Земли через 8,3 мин;

    парсек - единица измерения космических расстояний внутри звездных систем и между ними. 1пк - 206 265 а.е., т.е. приблизительно равен 30 трлн км, или 3,3 световым года.

    Структура макромира

    Каждый структурный уровень материи в своем развитии подчиняется специфическим законам, но при этом между этими уровнями нет строгих и жестких границ, все они теснейшим образом связаны между собой. Границы микро- и макромира подвижны, не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты построены из микрообъектов. Тем не менее, выделим важнейшие объекты макромира.

    Центральным понятием макромира является понятие вещества, которое в классической физике, являющейся физикой макромира, отделяют от поля. Под веществом понимают вид материи, обладающий массой покоя. Оно существует для нас в виде физических тел, которые обладают некоторыми общими параметрами - удельной массой, температурой, теплоемкостью, механической прочностью или упругостью, тепло- и электропроводностью, магнитными свойствами и т.п. Все эти параметры могут изменяться в широких пределах как от одного вещества к другому, так и для одного и того же вещества в зависимости от внешних условий.

    Структура микромира

    На рубеже XIX-XX вв. в естественно-научной картине мира произошли радикальные изменения, вызванные новейшими научными открытиями в области физики и затронувшие ее основополагающие идеи и установки. В результате научных открытий были опровергнуты традиционные представления классической физики об атомной структуре вещества. Открытие электрона означало утрату атомом статуса структурно неделимого элемента материи и тем самым коренную трансформацию классических представлений об объективной реальности. Новые открытия позволили:

    выявить существование в объективной реальности не только макро-, но и микромира;

    подтвердить представление об относительности истины, являющейся только ступенькой на пути познания фундаментальных свойств природы;

    доказать, что материя состоит не из «неделимого первоэлемента» (атома), а из бесконечного многообразия явлений, видов и форм материи и их взаимосвязей.

    Концепция элементарных частиц. Переход естественно-научных знаний с атомного уровня на уровень элементарных частиц привел ученых к заключению, что понятия и принципы классической физики оказываются неприменимыми к исследованию физических свойств мельчайших частиц материи (микрообъектов), таких, как электроны, протоны, нейтроны, атомы, которые образуют невидимый нами микромир. В силу особых физических показателей свойства объектов микромира совершенно не похожи на свойства объектов привычного нам макромира и далекого мегамира. Отсюда возникла необходимость отказа от привычных представлений, которые навязаны нам предметами и явлениями макромира. Поиски новых способов описания микрообъектов способствовали созданию концепции элементарных частиц.

    Согласно этой концепции основными элементами структуры микромира выступают микрочастицы материи, которые не являются ни атомами, ни атомными ядрами, не содержат в себе каких-либо других элементов и обладают наиболее простыми свойствами. Такие частицы были названы элементарными, т.е. самыми простыми, не имеющими в себе никаких составных частей.

    После того как было установлено, что атом не является последним «кирпичиком» мироздания, а построен из более простых элементарных частиц, их поиск занял главное место в исследованиях физиков. История открытия фундаментальных частиц началась в конце XIX в., когда в 1897 г. английский физик Дж. Томсон открыл первую элементарную частицу - электрон. История открытия всех известных сегодня элементарных частиц включает два этапа.

    Первый этап приходится на 30-50-е гг. XX в. К началу 1930-х гг. были открыты протон и фотон, в 1932 г. - нейтрон, а спустя четыре года - первая античастица - позитрон, которая по массе равна электрону, но имеет положительный заряд. К концу этого периода стало известно о 32 элементарных частицах, причем каждая новая частица была связана с открытием принципиально нового круга физических явлений.

    Второй этап приходится на 1960-е гг., кода общее число известных частиц превысило 200. На этом этапе основным средством открытия и исследования элементарных частиц стали ускорители заряженных частиц. В 1970-80-е гг. поток открытий новых элементарных частиц усилился, и ученые заговорили о семействах элементарных частиц. На данный момент науке известно более 350 элементарных частиц, различающихся массой, зарядом, спином, временем жизни и еще рядом физических характеристик.

    Все элементарные частицы обладают некоторыми общими свойствами. Одно из них - свойство корпускулярно-волнового дуализма, т.е. наличие у всех микрообъектов как свойств волны, так и свойств вещества.

    Другим общим свойством является наличие почти у всех частиц (кроме фотона и двух мезонов) своих античастиц. Античастицы - это элементарные частицы, схожие с частицами по всем признакам, но отличающиеся противоположными знаками электрического за ряда и магнитного момента. После открытия большого числа античастиц ученые заговорили о возможности существования антивещества и даже антимира. При соприкосновении вещества с антивеществом происходит процесс аннигиляции - превращение частиц и античастиц в фотоны и мезоны больших энергий (вещество превращается в излучение).

    Еще одним важнейшим свойством элементарных частиц является их универсальная взаимопревращаемость. Этого свойства нет ни в макро-, ни в мегамире.

    2. Развитие структурной химии

    Многочисленные эксперименты по изучению свойств химических элементов в первой половине XIX в. привели ученых к убеж дению, что свойства веществ и их качественное разнообразие обусловлены не только составом элементов, но и структурой их молекул. К этому времени мануфактурное производство сменилось фабричным, опирающимся на машинную технику и широкую сырьевую базу. В химическом производстве стала преобладать переработка огромных масс вещества растительного и животного происхождения. Качественное разнообразие данных веществ потрясающе велико - сотни тысяч химических соединений, состав которых, тем не менее, крайне однообразен, так как они состоят из нескольких элементов-органогенов. Это - углерод, водород, кислород, сера, азот, фосфор. Объяснение необычайно широкому разнообразию органических соединений при столь бедном элементном составе было найдено в явлениях, получивших названия изомерии и полимерии. Так было положено начало второму уровню развития химических знаний, который получил название структурной химии.

    Структурная химия стала более высоким уровнем по отношению к учению о составе вещества. При этом химия из науки преимущественно аналитической превратилась в науку синтетическую. Главным достижением этого этапа развития химии стало установление связи между структурой молекул и реакционной способностью веществ.

    Сам термин «структурная химия» - понятие условное. В нем, прежде всего, подразумевается такой уровень химических знаний, при котором, комбинируя атомы различных химических элементов, можно создать структурные формулы любого химического соединения. Возникновение структурной химии означало, что появилась возможность для целенаправленного качественного преобразования веществ, создания схемы синтеза любых химических соединений, в том числе и ранее неизвестных.

    Основы структурной химии были заложены еще Дж. Дальтоном, который показал, что любое химическое вещество представляет собой совокупность молекул, состоящих из определенного количества атомов одного, двух или трех химических элементов. Затем И. Бер-целиус выдвинул идею, что молекула представляет собой не простое нагромождение атомов, а определенную упорядоченную структуру атомов, связанных между собой электростатическими силами. Как позже показал химик Ш. Жерар, это утверждение было верно не всегда, поэтому еще в середине XIX в. структура молекул оставалась загадочной.

    В 1857 г. немецкий химик А. Кекуле опубликовал свои наблюдения о свойствах некоторых элементов, могущих заменять атомы водорода в ряде соединений, и ввел новый термин - сродство. Он стал обозначать количество атомов водорода, которые может заместить данный химический элемент. Число единиц сродства, прису щее данному химическому элементу, Кекуле назвал вагентностыо. При объединении атомов в молекулу происходило замыкание свободных единиц сродства. Таким образом, понятие «структура молекулы» свелось к построению наглядных формульных схем, которые служили химикам руководством в их практической работе, показывали, какие исходные вещества нужно брать для получения конечного продукта.

    Структурная химия позволяет наглядно демонстрировать валентность химических элементов как число единиц сродства, присущих атому: =С=; -О-; Н-. Комбинируя атомы различных химических элементов с их единицами сродства, можно создать структурные формулы любого химического соединения. А это означает, что химик в принципе может создавать план синтеза любого химического соединения - как уже известного, так и еще неоткрытого. То есть химик может прогнозировать получение неизвестного соединения и проверить свой прогноз синтезом.

    К сожалению, схемы Кекуле не всегда можно было осуществить на практике. Часто придуманная химиками реакция, которая должна была привести к получению вещества с нужной структурной формулой, не происходила. Это было вызвано тем, что подобные формальные схемы не учитывали реакционной способности веществ, вступавших в химическую реакцию.

    Поэтому важнейшим шагом в развитии структурной химии стало создание теории химического строения органических соединений русским химиком А.М. Бутлеровым. Бутлеров вслед за Кекуле признавал, что образование молекул из атомов происходит за счет замыкания свободных единиц сродства, но при этом он указывал на то, с какой энергией (большей или меньшей) это сродство связывает вещества между собой. Иными словами, Бутлеров впервые в истории химии обратил внимание на энергетическую неравноценность разных химических связей. Эта теория позволила строить структурные формулы любого химического соединения, так как показывала взаимное влияние атомов в структуре молекулы, а через это объясняла химическую активность одних веществ и пассивность других. Кроме того, она указывала на наличие активных центров и активных группировок в структуре молекул.

    В XX в. структурная химия получила дальнейшее развитие. В частности, было уточнено понятие структуры, под которой стали понимать устойчивую упорядоченность качественно неизменной системы. Также было введено понятие атомной структуры - устойчивой совокупности ядра и окружающих его электронов, находящихся в электромагнитном взаимодействии друг с другом, и моле кулярной структуры - сочетания ограниченного числа атомов, имеющих закономерное расположение в пространстве и связанных друг с другом химической связью с помощью валентных электронов.

    На основе достижений структурной химии у исследователей появилась уверенность в положительном исходе экспериментов в области органического синтеза. Сам термин «органический синтез» появился в 1860-1880-е гг. и стал обозначать целую область науки, названную так в противоположность общему увлечению анализом природных веществ. Этот период в химии был назван триумфальным шествием органического синтеза. Химики гордо заявляли о своих ничем не сдерживаемых возможностях, обещая синтезировать из угля, воды и воздуха все самые сложные тела, вплоть до белков, гормонов и пр. И действительность, казалось, подтверждала эти заявления: за вторую половину XIX в. число органических соединений за счет вновь синтезированных возросло с полумиллиона до двух миллионов.

    В это время появились всевозможные азокрасители для текстильной промышленности, различные препараты для фармации, искусственный шелк и т.д. До этого подобные материалы добывались в ограниченных количествах и с огромными затратами низкопроизводительного, преимущественно сельскохозяйственного, труда.

    Современная структурная химия достигла больших результатов. Синтез новых органических веществ позволяет получить полезные и ценные материалы, отсутствующие в природе. Так, ежегодно в мире синтезируют тысячи килограммов аскорбиновой кислоты (витамина С), множество новых лекарств, среди которых - безвредные антибиотики, лекарства против гипертонии, язвенной болезни и др.

    Самым последним достижением структурной химии является открытие совершенно нового класса металлорганических соединений, которые за свою двухслойную структуру получили название «сэндвичевых» соединений. Молекула этого вещества представляет собой две пластины из соединений водорода и углерода, между которыми находится атом какого-либо металла.

    Исследования в области современной структурной химии идут по двум перспективным направлениям:

    синтез кристаллов с максимальным приближением к идеальной решетке для получения материалов с высокими техническими показателями: максимальной прочностью, термической стойкостью, долговечностью в эксплуатации и др.;

    создание кристаллов с заранее запрограммированными дефектами кристаллической решетки для производства материалов с заданными электрическими, магнитными и другими свойствами.

    Решение каждой из этих проблем имеет свои сложности. Так, для решения первой проблемы необходимо соблюдение таких условий выращивания кристаллов, которые исключали бы воздействие на процесс всех внешних факторов, в том числе и поля гравитации (земного притяжения). Поэтому кристаллы с заданными свойства ми выращиваются на орбитальных станциях в космосе. Решение второй проблемы затруднено тем, что, наряду с запрограммированными дефектами, практически всегда образуются и нежелательные нарушения.

    Тем не менее, классическая структурная химия была ограничена рамками сведений только о молекулах вещества, находящегося в дореакционном состоянии. Этих сведений недостаточно для того, чтобы управлять процессами превращения вещества. Так, согласно структурным теориям должны быть вполне осуществимы многие химические реакции, которые на практике не происходят. Большое количество реакций органического синтеза, основанных лишь на принципах структурной химии, имеют столь низкие выходы продукции и такие большие отходы в виде побочных продуктов, что не могут быть использованы в промышленности. К тому же подобный синтез требовал в качестве исходного сырья дефицитных активных реагентов и сельскохозяйственной продукции, в том числе и пищевой, что крайне невыгодно в экономическом отношении.

    Поэтому изумление успехами структурной химии было недолгим. Интенсивное развитие автомобилестроения, авиации, энергетики, приборостроения в первой половине XX в. выдвинуло новые требования к производству материалов. Необходимо было получить высокооктановое моторное топливо, специальные синтетические каучуки, пластмассы, высокостойкие изоляторы, жаропрочные органические и неорганические полимеры, полупроводники. Для получения этих материалов способ решения основной проблемы химии, основанный на учении о составе и структурных теориях, был явно недостаточен. Он не учитывал резких изменений свойств вещества в результате влияния температуры, давления, растворителей и многих других факторов, воздействующих на направление и скорость протекания химических процессов. Учет и использование этих факторов вывело химию на новый качественный уровень ее развития.

    Высокомолекулярные соединения

    (полимеры), характеризуются молекулы массой от нескольких тысяч до нескольких (иногда многих) миллионов. В состав молекул высокомолекулярных соединений (макромолекул) входят тысячи атомов, соединенных хим. связями. Любые атом или группа атомов, входящие в состав цепи полимера или олигомера, наз. составным звеном. Наименьшее составное звено, повторением которого м. б. описано строение регулярного (см. ниже) полимера, наз. составным повторяющимся звеном. Составное звено, которое образуется из одной молекулымономера при полимеризации, называется мономерным звеном (ранее иногда наз. элементарным звеном). Например, в полиэтилене [-СН 2 СН 2 -] n повторяющееся составное звено - СН 2 , мономерное -СН 2 СН 2 .

    Название линейного полимера образуют прибавлением приставки "поли" (в случае неорганич. полимеров -"катена-поли"): а) к названию составного повторяющегося звена, заключенному в скобки (систематич. названия); б) к названию мономера, из к-рого получен полимер (полусистематич. названия, которые ИЮПАК рекомендует использовать для обозначения наиболее часто применяемых полимеров). Название составного повторяющегося звена образуют по правилам номенклатуры химической. Например: (первыми указаны полусистематич. названия):

    3. Структурные уровни организации жизни

    Жизнь характеризуется диалектическим единством противоположностей: она одновременно целостна и дискретна. Органический мир представляет собой единое целое, так как составляет систему взаимосвязанных частей (существование одних организмов зависит от других), и в то же время дискретен, поскольку состоит из отдельных единиц - организмов, или особей. Каждый живой организм, в свою очередь, также дискретен, так как состоит из отдельных органов, тканей, клеток, но вместе с тем каждый из органов, обладая определенной автономностью, действует как часть целого. Каждая клетка состоит из органоидов, но функционирует как единое целое. Наследственная информация осуществляется генами, но ни один из генов вне всей совокупности не определяет развитие признака и т.д.

    С дискретностью жизни связаны различные уровни организации органического мира, которые можно определить как дискретные состояния биологических систем, характеризуемых соподчи-ненностью, взаимосвязанностью и специфическими закономерностями. При этом каждый новый уровень обладает особыми свойствами и закономерностями прежнего, низшего уровня, поскольку любой организм, с одной стороны, состоит из подчиненных ему элементов, а с другой - сам является элементом, входящим в состав какой-то макробиологической системы.

    На всех уровнях жизни проявляются такие ее атрибуты, как дискретность и целостность, структурная организация, обмен веществом, энергией и информацией. Существование жизни на более высоких уровнях организации подготавливается и определяется структурой низшего уровня; в частности, характер клеточного уровня определяется молекулярным и субклеточным, организменный - клеточным, тканевым уровнями и т.д.

    Структурные уровни организации жизни чрезвычайно многообразны, но при этом основными являются молекулярный, клеточный, онтогенетический, популяционно-видовой, биоценотический, биогеоценотический и биосферный.

    Молекулярно-генетический уровень

    Молекулярно-генетический уровень жизни - это уровень функционирования биополимеров (белков, нуклеиновых кислот, полисахаридов) и других важных органических соединений, лежащих в основе процессов жизнедеятельности организмов. На этом уровне элементарной структурной единицей является ген, а носителем наследственной информации у всех живых организмов - молекула ДНК. Реализация наследственной информации осуществляется при участии молекул РНК. В связи с тем, что с молекулярными структурами связаны процессы хранения, изменения и реализации наследственной информации, данный уровень называют молекуляр-но-генетическим.

    Важнейшими задачами биологии на этом уровне являются изучение механизмов передачи генной информации, наследственности и изменчивости, исследование эволюционных процессов, происхождения и сущности жизни.

    Все живые организмы имеют в своем составе простые неорганические молекулы: азот, воду, двуокись углерода. Из них в ходе химической эволюции появились простые органические соединения, ставшие, в свою очередь, строительным материалом для более крупных молекул. Так появились макромолекулы - гигантские мо лекулы-полимеры, построенные из множества мономеров. Существуют три типа полимеров: полисахариды, белки и нуклеиновые кислоты. Мономерами для них соответственно служат моносахариды, аминокислоты и нуклеотиды.

    Белки и нуклеиновые кислоты являются «информационными» молекулами, так как в их строении важную роль играет последовательность мономеров, которая может быть весьма разнообразной. Полисахариды (крахмал, гликоген, целлюлоза) играют роль источника энергии и строительного материала для синтеза более крупных молекул.

    Белки - это макромолекулы, представляющие собой очень длинные цепи из аминокислот - органических (карбоновых) кислот, содержащих, как правило, одну или две аминогруппы (-NH 2).

    В растворах аминокислоты способны проявлять свойства как кислот, так и оснований. Это делает их своеобразным буфером на пути опасных физико-химических изменений. В живых клетках и тканях встречается свыше 170 аминокислот, однако в состав белков их входит только 20. Именно последовательность аминокислот, соединенных друг с другом пептидными связями 1 , образует первичную структуру белков. На долю белков приходится свыше 50% общей сухой массы клеток.

    Большинство белков выполняет функцию катализаторов (ферментов). В их пространственной структуре есть активные центры в виде углублений определенной формы. В такие центры попадают молекулы, превращение которых катализируется данным белком. Кроме того, белки играют роль переносчиков; например, гемоглобин переносит кислород от легких к тканям. Мышечные сокращения и внутриклеточные движения - результат взаимодействия молекул белков, функция которых заключается в координации движения. Функцией белков-антител является защита организма от вирусов, бактерий и т.д. Активность нервной системы зависит от белков, с помощью которых собирается и хранится информация из окружающей среды. Белки, называемые гормонами, управляют ростом клеток и их активностью.

    Нуклеиновые кислоты. Процессы жизнедеятельности живых организмов определяет взаимодействие двухвидов макромолекул - белков и ДНК. Генетическая информация организма хранится в молекулах ДНК, которая служит носителем наследственной информации для следующего поколения и определяет биосинтез белков, контролирующих почти все биологические процессы. Поэтому нук леиновым кислотам принадлежит такое же важное место в организме, как и белкам.

    Как белки, так и нуклеиновые кислоты обладают одним очень важным свойством - молекулярной дисимметрией (асимметрией), или молекулярной хиральностью. Это свойство жизни было открыто в 40-50-е гг. XIX в. Л. Пастером в ходе исследования строения кристаллов веществ биологического происхождения - солей виноградной кислоты. В своих опытах Пастер обнаружил, что не только кристаллы, но и их водные растворы способны отклонять поляризованный луч света, т.е. являются оптически активными. Позже они получили название оптических изомеров. У растворов веществ небиологического происхождения данное свойство отсутствует, строение их молекул симметрично.

    Сегодня идеи Пастера подтверждены, и считается доказанным, что молекулярная хиральность (от греч. cheir - рука) присуща только живой материи и является ее неотъемлемым свойством. Вещество неживого происхождения симметрично в том смысле, что молекул, поляризующих свет влево и вправо, в нем всегда поровну. А в веществе биологического происхождения всегда присутствует отклонение от этого баланса. Белки построены из аминокислот, поляризующих свет только влево (L-конфигурация). Нуклеиновые кислоты состоят из Сахаров, поляризующих свет только вправо (D-конфигурация). Таким образом, хиральность заключается в асимметрии молекул, их несовместимости со своим зеркальным отражением, как у правой и левой руки, что и дало современное название этому свойству. Интересно отметить, что если бы человек вдруг превратился в свое зеркальное отражение, то с его организмом все было бы нормально до тех пор, пока он не стал бы есть пищу растительного или животного происхождения, которую он просто не смог бы переварить.

    Нуклеиновые кислоты - это сложные органические соединения, представляющие собой фосфорсодержащие биополимеры (поли-нуклеотиды).

    Существует два типа нуклеиновых кислот - дезоксирибонук-леиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Свое название нуклеиновые кислоты (от лат. nucleus - ядро) получили из-за того, что впервые были выделены из ядер лейкоцитов еще во второй половине XIX в. швейцарским биохимиком Ф. Мишером. Позже было обнаружено, что нуклеиновые кислоты могут находиться не только в ядре, но и в цитоплазме и ее органоидах. Молекулы ДНК вместе с белками-гистонами образуют вещество хромосом.

    В середине XX в. американский биохимик Дж. Уотсон и английский биофизик Ф. Крик раскрыли структуру молекулы ДНК. Рентгеноструктурные исследования показали, что ДНК состоит из двух цепей, закрученных в двойную спираль. Роль остовов цепей играют сахарофосфатные группировки, а перемычками служат основания пуринов и пиримидинов. Каждая перемычка образована двумя основаниями, присоединенными к двум противоположным цепям, причем, если у одного основания одно кольцо, то у другого - два. Таким образом, образуются комплементарные пары: А-Т и Г-Ц. Это значит, что последовательность оснований одной цепи однозначно определяет последовательность оснований в другой, комплементарной ей цепи молекулы.

    Ген - это участок молекулы ДНК или РНК (у некоторых вирусов). РНК содержит 4-6 тысяч отдельных нуклеотидов, ДНК - 10-25 тысяч. Если бы можно было вытянуть ДНК одной человеческой клетки в непрерывную нить, то ее длина составила бы 91 см.

    И все же рождение молекулярной генетики произошло несколько раньше, когда американцы Дж. Бидл и Э. Тэйтум установили прямую связь между состоянием генов (ДНК) и синтезом ферментов (белков). Именно тогда появилось знаменитое высказывание: «один ген - один белок». Позже было выяснено, что основной функцией генов является кодирование синтеза белка. После этого ученые сконцентрировали свое внимание на вопросе, как записана генетическая программа и как она реализуется в клетке. Для этого нужно было выяснить, как всего четыре основания могут кодировать порядок расположения в молекулах белка целых двадцати аминокислот. Основной вклад в решение этой проблемы внес знаменитый физик-теоретик Г. Гамов в середине 1950-х гг.

    По его предположению, для кодирования одной аминокислоты используется сочетание из трех нуклеотидов ДНК. Эта элементарная единица наследственности, кодирующая одну аминокислоту, получила название кодона. В 1961 г. гипотеза Гамова была подтверждена исследованиями Ф. Крика. Так был расшифрован молекулярный механизм считывания генетической информации с молекулы ДНК при синтезе белков.

    В живой клетке имеются органеллы - рибосомы, которые «читают» первичную структуру ДНК и синтезируют белок в соответствии с записанной в ДНК информацией. Каждой тройке нуклеотидов ставится в соответствие одна из 20 возможных аминокислот. Именно так первичная структура ДНК определяет последовательность аминокислот синтезируемого белка, фиксирует генетический код организма (клетки).

    Генетический код всего живого, будь то растение, животное или бактерия, одинаков. Такая особенность генетического кода вместе со сходством аминокислотного состава всех белков свидетельствует о биохимическом единстве жизни, происхождении всех живых существ на Земле от единого предка.

    Также был расшифрован механизм воспроизводства ДНК. Он состоит из трех частей: репликации, транскрипции и трансляции.

    Репликация - это удвоение молекул ДНК. Основой репликации является уникальное свойство ДНК к самокопированию, что дает возможность деления клетки на две идентичные. При репликации ДНК, состоящая из двух скрученных молекулярных цепочек, раскручивается. Образуются две молекулярные нити, каждая из которых служит матрицей для синтеза новой нити, комплементарной к исходной. После этого клетка делится, и в каждой клетке одна нить ДНК будет старой, а вторая - новой. Нарушение последовательности нуклеотидов в цепи ДНК приводит к наследственным изменениям в организме - мутациям.

    Транскрипция - это перенос кода ДНК путем образования од-ноцепочной молекулы информационной РНК (и-РНК) на одной из нитей ДНК. и-РНК - это копия части молекулы ДНК, состоящей из одного или группы расположенных рядом генов, несущих информацию о структуре белков.

    Трансляция - это синтез белка на основе генетического кода и-РНК в особых органоидах клетки - рибосомах, куда транспортная РНК (т-РНК) доставляет аминокислоты.

    В конце 1950-х гг. русскими и французскими учеными одновременно была выдвинута гипотеза о том, что различия в частоте встречаемости и порядке расположения нуклеотидов в ДНК у разных организмов имеют специфический для видов характер. Данная гипотеза позволила изучать на молекулярном уровне эволюцию живого и характер видообразования.

    Существует несколько механизмов изменчивости на молекулярном уровне. Важнейшим из них является уже упоминавшийся механизм мутации генов - непосредственное преобразование самих ге нов, находящихся в хромосоме, под воздействием внешних факторов. Факторами, вызывающими мутацию (мутагенами), являются радиация, токсичные химические соединения, а также вирусы. При этом механизме изменчивости порядок расположения генов в хромосоме не меняется.

    Еще один механизм изменчивости - рекомбинация генов. Это создание новых комбинаций генов, располагающихся в конкретной хромосоме. При этом сама молекулярная основа гена не меняется, а происходит его перемещение с одного участка хромосомы на другой или идет обмен генами между двумя хромосомами. Рекомбинация генов имеет место при половом размножении у высших организмов. При этом не происходит изменения общего объема генетической информации, он остается неизменным. Этот механизм объясняет, почему дети лишь частично похожи на своих родителей - они наследуют признаки от обоих родительских организмов, которые сочетаются случайным образом.

    Другой механизм изменчивости - неклассическая рекомбинация ге нов - был открыт лишь в 1950-е гг. При неклассической рекомбинации генов происходит общее увеличение объема генетической информации за счет включения в геном клетки новых генетических элементов. Чаще всего новые элементы привносятся в клетку вирусами. Сегодня обнаружено несколько типов трансмиссивных генов. Среди них - плазмиды, представляющие собой двухцепочную кольцевую ДНК. Из-за них после длительного использования каких-либо лекарств наступает привыкание, после чего они перестают оказывать медикаментозное воздействие. Патогенные бактерии, против которых действует наше лекарство, связываются с плазми-дами, что и придает бактериям устойчивость к лекарству, и они перестают его замечать.

    Мигрирующие генетические элементы могут вызывать как структурные перестройки в хромосомах, так и мутации генов. Возможность использования таких элементов человеком привела к появлению новой науки - генной инженерии, целью которой является создание новых форм организмов с заданными свойствами. Таким образом, с помощью генетических и биохимических методов конструируются новые, не существующие в природе сочетания генов. Для этого видоизменяется ДНК, кодирующая производство белка с нужными свойствами. Данный механизм лежит в основе всех современных биотехнологий.

    С помощью рекомбинантной ДНК можно синтезировать разнообразные гены и вводить их в клоны (колонии идентичных организмов) для направленного синтеза белка. Так, в 1978 г. был синтезирован инсулин - белок для лечения сахарного диабета. Нужный ген был введен в плазмиду и внедрен в обычную бактерию.

    Генетики работают над созданием безопасных вакцин от вирусных инфекций, так как традиционные вакцины представляют собой ослабленный вирус, который должен вызывать выработку антител, поэтому их введение связано с определенным риском. Генная инженерия позволяет получить ДНК, кодирующую поверхностный слой вируса. В этом случае иммунитет вырабатывается, но заражение организма исключено.

    Сегодня в генной инженерии рассматривается вопрос об увеличении продолжительности жизни и возможности бессмертия путем изменения генетической программы человека. Достичь этого можно, увеличив защитные ферментные функции клетки, оберегая молекулы ДНК от различных повреждений, связанных как с нарушением обмена веществ, так и с влиянием окружающей среды. Кроме того, ученым удалось открыть пигмент старения и создать специальный препарат, освобождающий клетки от него. В опытах с мы

    шами было получено увеличение продолжительности их жизни. Также ученым удалось установить, что в момент деления клетки уменьшаются теломеры - особые хромосомные структуры, расположенные на концах клеточных хромосом. Дело в том, что при репликации ДНК специальное вещество - полимераза - идет по спирали ДНК, снимая с нее копию. Но копировать ДНК полимераза начинает не с самого начала, а оставляет каждый раз недокопи-рованный кончик. Поэтому с каждым последующим копированием спираль ДНК укорачивается за счет концевых участков, не несущих никакой информации, или теломер. Как только теломеры исчерпываются, при последующих копированиях начинает сокращаться часть ДНК, несущая генетическую информацию. Это и есть процесс старения клеток. В 1997 г. в США и Канаде был проведен эксперимент по искусственному удлинению теломер. Для этого использовался вновь открытый клеточный фермент - теломераза, способствующий наращиванию теломер. Полученные таким образом клетки обрели способность многократно делиться, полностью сохранив свои нормальные функциональные свойства и не превращаясь в раковые клетки.

    В последнее время стали широко известны успехи генных инженеров в области клонирования - точного воспроизведения того или иного живого объекта в определенном количестве копий из соматических клеток. При этом выращенная особь генетически неотличима от родительского организма.

    Получение клонов у организмов, размножающихся посредством партеногенеза, без предшествующего оплодотворения, не является чем-то особенным и давно используется генетиками. У высших организмов также известны случаи естественного клонирования - рождение однояйцевых близнецов. Но искусственное получение клонов высших организмов связано с серьезными трудностями. Тем не менее, в феврале 1997 г. в лаборатории Яна Вильмута в Эдинбурге был разработан метод клонирования млекопитающих, и с его помощью была выращена овечка Долли. Для этого у овцы породы Шотландской черномордой извлекли яйцеклетки, поместили их в искусственную питательную среду и удалили из них ядра. Затем взяли клетки молочной железы взрослой беременной овцы породы Финский дорсет, несущие полный генетический набор. Эти клетки через некоторое время слили с безъядерными яйцеклетками и активировали их развитие посредством электрического разряда. Затем развивающийся зародыш в течение шести дней рос в искусственной среде, после чего эмбрионы были трансплантированы в матку приемной матери, где и развивались до рождения. Но из 236 опытов успешным оказался лишь один - выросла овечка Долли.

    После этого Вильмут заявил о принципиальной возможности клонирования человека, вызвавшей самые оживленные дискуссии

    не только в научной литературе, но и в парламентах многих стран, поскольку такая возможность связана с очень серьезными моральными, этическими и юридическими проблемами. Не случайно в некоторых странах уже приняты законы, запрещающие клонирование человека. Ведь большинство клонированных эмбрионов гибнет. Кроме того, велика вероятность рождения уродов. Так что опыты по клонированию не только аморальны, но и просто опасны с точки зрения сохранения чистоты вида Homosapiens. To, что риск слишком велик, подтверждается информацией, пришедшей в начале 2002 г. и сообщающей о заболевании овечки Долли артритом - болезнью, не характерной для овец, после чего ее вскоре пришлось усыпить.

    Поэтому намного более перспективным направлением исследований является изучение генома (совокупности генов) человека. В 1988 г. по инициативе Дж. Уотсона была создана международная организация «Геном человека», которая объединила множество ученых из разных стран мира и поставила задачу расшифровки всего генома человека. Это грандиозная задача, так как число генов в организме человека составляет от 50 до 100 тысяч, а весь геном - это более 3 млрд. нуклеотидных пар.

    Считается, что первый этап данной программы, связанный с расшифровкой последовательности расположения нуклеотидных пар, будет завершен к концу 2005 г. Уже проведена работа по созданию «атласа» генов, набора их карт. Первая такая карта составлена в 1992 г. Д. Коэном и Ж. Доссе. В окончательном варианте она бьыа представлена в 1996 г. Ж. Вайсенбахом, который, изучая под микроскопом хромосому, с помощью специальных маркеров отмечал ДНК различных ее участков. Затем он клонировал эти участки, выращивая их на микроорганизмах, и получал фрагменты ДНК - последовательность нуклеотидов одной цепочки ДНК, из которой состояли хромосомы. Таким образом, Вайсенбах определил локализацию 223 генов и выявил около 30 мутаций, приводящих к 200 заболеваниям, среди которых гипертония, диабет, глухота, слепота, злокачественные опухоли.

    Одним из результатов этой программы, пусть и не законченной, является возможность выявления генетических патологий на ранних стадиях беременности и создание генотерапии - метода лечения наследственных заболеваний с помощью генов. Перед проведением процедуры генотерапии выясняют, какой ген оказался дефектным, получают нормальный ген и вводят его во все больные клетки. При этом очень важно отследить, чтобы введенный ген работал под контролем механизмов клетки, иначе будет получена раковая клетка. Уже есть первые больные, вылеченные таким образом. Правда, пока не ясно, насколько радикально они излечены и

    не вернется ли болезнь в будущем. Также пока не ясны и отдаленные последствия такого лечения.

    Конечно, использование биотехнологии и генной инженерии имеет как положительные, так и отрицательные стороны. Об этом говорит опубликованный в 1996 г. Федерацией европейских микробиологических обществ меморандум. Связано это с тем, что широкая общественность с подозрением и враждебностью относится к генным технологиям. Страх вызывают возможность создания генетической бомбы, способной исказить геном человека и привести к рождению уродов; появление неизвестных заболеваний и производство биологического оружия.

    И, наконец, в последнее время широко обсуждается проблема повсеместного распространения трасгенных продуктов питания, созданных путем внедрения генов, блокирующих развитие вирусных или грибковых заболеваний. Уже созданы и продаются трансгенные помидоры и кукуруза. На рынок поставляются хлеб, сыр и пиво, изготовленные с помощью трансгенных микробов. Такие продукты устойчивы по отношению к вредным бактериям, обладают улучшенными качествами - вкусом, питательной ценностью, крепостью и т.д. Так, в Китае выращивают устойчивые к вирусам табак, томаты и сладкий перец. Известны трансгенные томаты, устойчивые к бактериальной инфекции, картофель и кукуруза, устойчивые к грибкам. Но до сих пор неизвестны отдаленные последствия использования таких продуктов, прежде всего, механизм их воздействия на организм и геном человека.

    Конечно, за двадцать лет использования биотехнологий не случилось ничего из того, чего опасаются люди. Все новые микроорганизмы, созданные учеными, менее болезнетворны, чем их исходные формы. Ни разу не произошло вредного или опасного распространения рекомбинантных организмов. Тем не менее, ученые тщательно следят за тем, чтобы трансгенные штаммы не содержали генов, которые после их переноса в другие бактерии могут дать опасный эффект. Существует теоретическая опасность создания новых видов бактериологического оружия на основе генных технологий. Поэтому ученые должны учитывать этот риск и содействовать развитию системы надежного международного контроля, способного зафиксировать и приостановить подобные работы.

    С учетом возможной опасности использования генных технологий разработаны документы, регламентирующие их применение, правила безопасности проведения лабораторных исследований и промышленного освоения, а также правила внесения генетически модифицированных организмов в окружающую среду.

    Таким образом, сегодня считается, что при соблюдении соответствующих предосторожностей польза, приносимая генными технологиями, перевешивает риск возможных отрицательных последствий.

    4. Концепция развития цивилизации (Н.Н. Моисеева, В. Зубакова,

    Л. Брауна)

    Самый радикальный вариант депопуляции предложил В. Зубаков, сформулировавший представления об экогее (Гея - богиня Земли) - будущем биосферы с депопуляцией до 1,5 млрд человек в течение 50 лет . В его сценарии присутствуют в качестве основных элементов такие сомнительные (при самой мягкой оценке!) положения, как внедрение матриархата, создание внеклассового и вненационального мирового сообщества, формирование экологической армии за счет вооруженных сил НАТО и России, уничтожение преступников и преступности в течение одного поколения и т. д.
    Таким образом, несмотря на экологическую привлекательность сценария консервационистов он трудно реализуем в силу социальных причин. На страже многодетности стоят национальные традиции и практически все религии, запрещающие регулирование деторождения.
    «Центристскими» являются документы, принятые на «Рио-92». На позициях центризма стоит американский Институт «WorldWatch», основанный Л. Брауном. Институт ежегодно выпускает специальные обзоры состояния проблем экологии в мире (ежегодники за 1992, 1993 и 2000 гг. переведены на русский язык). Особую роль сыграл ежегодник за 1994 г. , содержавший две теоретических главы (их авторы - Сандра Постел и Лестер Браун), в которых были сформулированы крайне важные для разработки модели общества устойчивого развития понятия - поддерживающей емкости (carrying capacity) планеты и продовольственной безопасности (food security).
    Первое понятие обозначает некую максимальную нагрузку на биосферу, при которой она способна восстанавливаться за счет механизмов самоорганизации, а второе отражает соотношение плотности народонаселения и возможностей биосферы устойчиво снабжать его продуктами питания как из естественных экосистем (в первую очередь океанических), так и из искусственных - сельскохозяйственных.
    В этом же выпуске Л. Браун дал оптимистическую оценку и благоприятный прогноз перспективы построения общества устойчивого развития. Он считал, что уже наметился перелом в отношении к проблеме УР, и начиная с 1990 г. человечество вступило в новую «энвайронментальную эру», сменившую эру экономического роста. Как ключевой признак «энвайронментальной эры» Браун назвал переключение систем национальной безопасности с решения военных задач (период «холодной войны») на обеспечение населения продовольствием, регулирование роста народонаселения и охрану окружающей среды. Однако сегодня, спустя 10 лет после «Рио-92», очевидно, что путь к обществу устойчивого развития будет долгим и тернистым...
    Центристский сценарий включает ряд элементов стратегии, которые должны быть приняты мировым сообществом. Общие очертания общества устойчивого развития сегодня уже в основном определились , хотя «технологические» аспекты экологизации уклада жизни человечества пока не ясны, а лишь обсуждаются. Чтобы построить мировое сообщество устойчивого развития, необходимо:
    гуманными методами добиться регулирования роста народонаселения на уровне, который не превысит поддерживающей емкости планеты (8-12 млрд человек);
    обеспечить продовольственную безопасность человечества, т. е. защитить его от угрозы голода в настоящем и будущем (за счет компромиссной системы сельского хозяйства при умеренном использовании удобрений, гербицидов, трансгенных растений и максимальном раскрытии агроресурсного и биологического потенциала агроэкосистем, а также изменения рациона большей части человечества с заменой значительной доли животного белка растительным);
    обеспечить человечество энергией без истощения энергоресурсов и загрязнения среды, сопровождающего получение и транспортировку энергоносителей и энергии (смешанный тип энергетики: 30% за счет нетрадиционных источников, остальное - за счет традиционных с повышением доли атомной энергетики при использовании безопасных ядерных реакторов и замкнутого топливного цикла; переход на энергосберегающие технологии во всех сферах деятельности);
    обеспечить неистощающее использование сырьевых ресурсов для промышленности (широкое внедрение рециклинга);
    прекратить сокращение биологического разнообразия (доля охраняемых природных территорий должна быть не ниже 30%);
    резко снизить уровень загрязнения среды за счет «экологизации» промышленности и сельского хозяйства;
    преодолеть потребительский подход (в первую очередь в странах «золотого миллиарда») и тем самым снизить давление человека на природу;
    резко повысить уровень международного сотрудничества в области охраны окружающей среды.
    Все эти экономические по своей природе меры должны сочетаться с экологическим образованием и воспитанием, формированием у каждого жителя планеты экологического мировоззрения и социальной активности в решении вопросов охраны окружающей среды.
    В заключение остается присоединиться к мнению О.К. Дрейера и В.А. Лося о том, что пока концепция общества устойчивого развития напоминает «философский камень» и «вечный двигатель». Однако это ни в коей мере не снижает ее значения для человечества: философский камень не был найден, но в процессе его поисков алхимия переросла в химию, а попытки изобрести вечный двигатель стимулировали развитие механики. Можно полагать, что при конкретизации путей к обществу устойчивого развития человечество научится экологическому укладу жизни, альтернативой которому является глобальный экологический кризис.

    В. А. ЗУБАКОВ

    ИТОГИ XX И ПЕРСПЕКТИВЫ XXI веков ГЛАЗАМИ ГЕОЭКОЛОГА:

    ИПОСТАСИ ГЛОБАЛИЗАЦИИ И ИМПЕРАТИВЫ ВЫЖИВАНИЯ

    Г. Г. Малинецкий и другие ученые делают три важных вывода:

    1. Мир подошел к системному кризису; 2. В России на государственном уровне нет прогноза динамики биотехносферы и нет мониторинга техносферных процессов; 3. Анализ дальних целей, встающих перед человечеством и страной, становится сейчас главной задачей науки (Малинецкий и др. 2003). Поскольку авторы пишут, что Рио-де-Жанейро был не рывком вперед, а шагом назад,то, по сути, ими ставится и четвертый вопрос – почему 30-летние усилия ООН по выработке стратегии поддерживаемого развития Sustainable Development – SD (у нас «устойчивого развития» – УР) не привели к успеху? Этот вопрос следует и из обзора отчета Амстердамской международной конференции «Вызовы изменяющейся Земли» (Кондратьев, Лосев 2002), а также из моего обзора итогов Йоханнесбургского саммита ООН (Зубаков 2003). К трем первым вопросам (Малинецкий и др. 2003) автор близко подошел 15 лет назад (Зубаков 1990) и тогда же решил сменить свою специализацию стратиграфа-палеоклима-

    толога на исследование проблем исторической геоэкологии, тогда еще не сформировавшейся научной дисциплины. В последующих примерно 50 статьях (укажу лишь одну: Зубаков1998–2001) и в трех брошюрах (Зубаков 1995; 2000а; 2002) я 104 вышел на контуры альтернативы ныне существующей при-родопотребительской парадигмы. Я назвал ее экогеософской (от греч. «мудрость дома Земля»). Она не осталась незамеченной. Были и рецензии (и «за», и «против»), и дипломы, и даже – за одну из них (Зубаков 2002) – медаль Россий-ской академии естествознания. Однако мои попытки поставить тему для фундаментального исследования в план РАН, даже в форме гранта РФФИ, не проходили. То ли заявки принимались за «страшилки», то ли противоречили насаждаемой ныне рыночной идеологии, не знаю. Именно поэтому статью ученых (Малинецкий и др. 2003), представляющих молодую элиту РАН, я воспринял как знаковый поворот, возвещающий смену погоды, а возможно, и самого климата в РАН по отношению к пограничным вопросам экологии,

    социологии и экономики. Хочу продолжить обсуждение поднятых вопросов, выведя их в конкретное русло ойкогеономической синтагмы . Под новым тер-мином синтагма (греч. «вместе построяемое») А. И. Ракитов (2003)предложил понимать систему знаний, правил и принципов, разработанных в разных науках, но сводимых вместе для решения важных практических проблем. Именно такой проблемой на стыке геоэкологии, геоэкономики, социологии, политики и синергетики и является, по-моему, создание еще не существующей, но остро не-

    обходимой для выживания человечества «науки – стратегии» об управлении гомеостазисом объединенного человечества с поддерживаемой Им с помощью Коллективного Разума биосферой. Я называю ее ойкогеономикой (греч. «ведение дома Земля»).

    Я согласен с постановкой (Малинецкий и др. 2003; Кондратьев, Лосев 2002) программы обсуждения. И тоже считаю, что цели человечества, не «сиюминутные», на 3–4 года, а дальние, на сто и более лет, сейчас становятся (уже стали!) главной задачей науки и ученых. Но чтобы правильно их выбирать, надо, очевидно, понимать – Где мы? и Почему? Поэтому я разделяю обсуждение поставленных четырех вопросов на две части – анализ итогов ХХ века и

    осмысление целей и стратегии человечества на XXI век. Учитывая сложность и значимость проблем, сделать это можно, очевидно, только в большой статье. И при этом обсуждение вынуждено быть сжатым, почти тезисным. Обзор итогов ХХ века обычно начинают либо заголов-ками типа «Эпилог», «Эпитафия» (Азроянц 2002), «Конец истории», «Реквием» (Неклесса 2002), либо словами «Кризис», «Катастрофа», «Апокалипсис». Авторы первых главным итогом ХХ века считают глобализацию, авторы вторых – глобальный экологический кризис (ГЭК). Есть ли разница? Ведь в обоих случаях описываются, по сути, одни и те

    же события. Но вопрос в том, с каких методологических позиций. Говоря о глобализации, исследователи, а это чаще всего историки и экономисты, анализируют современные процессы. О кризисе (ГЭК) говорят те, кто сравнивают современные геоэкологические процессы с прежними, то есть расширяют тему анализа до итогов цивилизации . То есть разница в интервалах осмысляемого. И здесь уместно привести заключение специалистов по проблемам управления во главес И. В. Прангишвили (Прангишвили и др. 2001) о том, что осмысление результатов социальных процессов всегда отстает от хода самих процессов как минимум на 15 лет. При анализе же системного геоэкологического кризиса это отставание, безусловно, куда более значительно.

    У статьи две цели: 1) дать ответ геоэколога на вопросы, сформулированные синергетиками (Малинецкий и др. 2003; Прангишвили и др. 2001; Иноземцев 2003; и др.); 2) обсудить конкретные различия в оценке событий ХХ века (а это прежде всего процессы глобализации), возникшие между экономистами и историками (Азроянц 2002; Неклесса 2002; Субетто 2003), с одной стороны, и геоэкологами – с другой. Два слова о методологии анализа. В подкупающей своей цельностью книге Э. А. Азроянца (Азроянц 2002) глобализация рас-сматривается поочередно как проблема, как реальность и как процесс. Мне кажется, правильнее не разрывать эти три аспекта глобализации, а найти другую, содержательную ее классификацию. В этом я ближе к логике А. С. Панарина (2002) и А. И. Неклессы (2002). И ниже буду классифицировать глобализацию как проблему, реальность и процесс одновременно, выделяя четыре главные ее ипостаси (сущностные вариации), с характерными для каждой индикаторами (см. табл. 1, с. 106). Конечно, ипостасей может быть и больше, но ограничусь главными. Есть еще одно важное различие в описаниях глобализации – их можно разделить по степени соотношения эмпиризма и теории. Например, только что опубликован двухтомник трудов конференции, проведенной общественной Петровской академией наук и искусств под руководством А. И. Субетто (Субетто 2003). В нем на 750 страницах представлено 48 статей 44 видных экономистов, философов и историков, при-

    держивающихся или сочувствующих социалистической идеологии. Авторы его трактуют глобализацию как заключительный этап развития империализма и капитализма. А в качестве определяющей силы называют «капиталократию» .

    При этом процессу глобализации противопоставляется антиглобалистское движение, которое А. И. Субетто принимает за начало «второй волны Глобальной Социалистической Цивилизационной Революции» (Субетто 2003: 39–41).

    Идеологической трактовке глобализации противостоит прагматическая трактовка, характерная для большинства зарубежных монографий и обзоров, а у нас развиваемая В. Л. Иноземцевым вжурнале «Свободная мысль – XXI» (Иноземцев 2003). Он подчеркивает совершенно объективную и закономерную реальность глобализации как она есть и не считает правильным давать ей какуюлибо эмоциональную оценку. При этом, однако, характеризует

    движение антиглобалистов как тупиковое и деградационное. Им де, антиглобалистам, «нечего предложить миру» (Иноземцев 2003). Есть и третья трактовка глобализации как некоего мировоззрения . Первая часть очень содержательной коллективной монографии «Глобальное сообщество», собранной А. И. Неклессой (2002), так и называется «Глобализм как феномен и как мировоззрение». Такая трактовка наиболее интересна, хотя и спорна.

    Не примыкая ни к одной из этих трактовок, я предприму нижесвой независимый анализ, следуя таблице 1 (с. 106). Эколого-демографическая ипостась глобализации Ее индикаторами являются два процесса трансграничного пере-

    носа – загрязнение окружающей среды токсическими отходами техногенной деятельности и этническое смешение населения. Жаком Аттали (1990) последнее именуется «ростом кочевников». Действительно, примерно каждый пятый рабочий в Германии является турком, во Франции – арабом, в США – мексиканцем. Что нашими рынками наполовину заправляют выходцы с Кавказа и из Средней Азии, мы видим и сами. По данным Н. Ф. Минеева (Субетто 2003: 79), иностранцы среди жителей Германии составляют 9 %, в США – 9,8 %, в Канаде – 17,1 %, в Швеции – 19,4 %, в Австрии – 21,1 %, а в Люксембурге даже 34,9 %. Откуда идут эти потоки мигрантов? Из стран Юга, которые являются самыми бедными. Что такое трансграничный перенос загрязнений , посмотрим на примере кислотных дождей и переноса радиоактивных изотопов – самых характерных проявлений техносферных процессов. Механизм кислотных дождей заключается в окислении диоксидов серы и оксидов азота в облачных каплях и тумане Асимметрия «демографического взрыва», ведущая к биосоциальной неустойчивости человеческой популяции (Коптюг и др. 1996).

    до семи дней и ветрами переносятся на сотни и тысячи километровот района выбросов. Выпадая над лесами, кислотные дожди сжигают листву, а над озерами – убивают планктон и рыбу. После дождей с концентрацией рН ниже трех почва теряет способность что-либо производить. Уже сейчас, при средней интенсивности кислотных дождей в 400 единиц на гектар, мертвыми оказываются огромные площади лесов и тысячи озер. Однако, по расчетам Р. Айреса, к 2040 г. интенсивность кислотных дождей может возрасти до 2400–

    3600 единиц, то есть в 6–9 раз (Кондратьев 1999). Перенос радиоактивных осадков «работает» на еще большие расстояния. Так, во время чернобыльской аварии около 280 разных радионуклидов выпало на территории от Швеции до Турции. Изотопы стронция и цезия, выброшенные при новоземельских испытаниях, отравили лишайникипо всему северу Евразии, а следовательно, и оленей вплоть до Чукотки. И у чукчей, питающихся олениной, концентрация этих изотопов оказалась сопоставимой с той, которая отмечена у жителей окрестностей Чернобыля (Фешбах, Френди 1992). И еще: в молоке эскимосок Гренландии и в телах пингвинов Антарктиды, питающихся рыбой, и сейчас обнаруживаются высокие, в миллионы раз превышающие водный фон, концентрации пестицидов, хотя они давно запрещены в сельском хозяйстве. Итак, трансграничные переносы – это самые явные и бесспорные индикаторы глобализации как процесса заполнения экосферы Земли людьми и отходами их техногенной деятельности и глобального экологического кризиса! Видно, что демографический взрыв – скачкообразное почти четырехкратное (!) увеличение населения Земли за ХХ век, на 4,5 млрд (с 1,6 до 6,1 млрд) – является ведущей, но не единственной характеристикой глобального экокризиса. Описывать параметры ГЭК здесь нет возможности, это сделано ранее (Зубаков 2000а). Ограничусь ссылкой на поражающие воображение размеры загрязнения окру-

    жающей среды на территории бывшего СССР. Они приведены в монографии М. Фешбаха и А. Френди (1992), из которой мы узнаем, что «самым-самым» экологически загрязненным городом мира является Норильск, морем – Каспий, а регионом – окрестности Кыштыма на Урале. По индексу Dwi – Dangerous wastes index – отношению объема ядовитых отходов к общему объему отходов – наше российское производство (Dwi – 4,53) оказывается, по Е. С. Ивлевой, в

    20 раз (!) опаснее немецкого (Dwi – 0,26) и в три раза – американского (Dwi – 1,49) (Зубаков 2000а). Поэтому-то наш ведущий эколог А. В. Яблоков и назвал СССР «страной-мутантом». Индикаторные процессы глобального экокризиса (ГЭК) Самое важное для нас сейчас – это понять, что техногенное загрязнение биосферы и рост техногенных отходов (общий объем которых, если их распределить ровным слоем по поверхности суши, в пять раз превышает объем биомассы живого вещества) является прямым следствием демографического взрыва, происшедшего в ХХ веке. Если население Земли за ХХ век выросло

    в 4 раза (точнее, в 3,75 раза), то объем техногенных выбросов возрос в 18 раз (!).

    По законам биосферы, высшие консументы (лат. «потребители»), то есть все млекопитающие, включая род Homo, могут, не нарушая биоэкологических круговоротов, потреблять только 1 % земной биомассы. Человечество же перешло этот рубеж, по расчетам В. Г. Горшкова (1995), а за рубежом Витоусека, в начале ХХ века, и сейчас потребляет около 10 % всей биомассы планеты и около 40 % биомассы суши (!). Иными словами, оно за ХХ век на порядок превысило свою численность, разрешенную биоэкологическими

    законами. К этому выводу независимо пришли и видные экономисты под руководством лауреатов Нобелевской премии Р. Гудленда и Х. Дэли (Goodland, Daly, Serafy 1991), из чего они заключили, что и возможности стихийного рынка в условиях переполненной экологической ниши исчерпали себя. Однако их выводы были проигнорированы политиками, собравшимися в Рио-де-Жанейро.

    По законам биологии и экологии, у вида, превысившего пределы своей экониши, происходит сброс численности. Он хорошо изучен зоологами. Демографы деликатно именуют его «демографическим переходом» . Процесс его математически изучен С. П. Капицей (1999). Он считает, что переход займет 90 лет и что за это время численность человечества может свободно удвоиться, а рост производства продовольствия (которого потребуется в 2,5 раза больше, чем за всю историю человечества) может-де быть обеспечен за счет создания генетически модифицированных видов. По мнению же биологов, сброс численности человечества будет более катастрофичен. Приведу описание его академиком НАН Украины В. А. Кордюмом. Он пишет: «Если пренебречь Биосферой, списав ее со счета как обузу, если планету превратить в подсобное хозяйство, создать искусственную среду обитания и жить, ни в чем себе не отказывая, то тогда численность свыше 1 млрд приведет уже не только и не «просто» к разрушению Биосферы, а к разрушению всей планеты, сделав ее принципиально не пригодной для содержания на ней чрезмерной численности венца творения. Так постепенно формировалось представление, получившее в конце концов название «золотой миллиард» , то есть то количество людей, которое в итоге должно существовать на Земле. Должно, потому что иначе не может… Но что это значит в реалиях жизни? Динамическая избыточность – основа существования всего живого . Она является платой за устранение мутационного груза . Но избыточность стационарная – самая большая биоопасность для всего живого. Такая избыточность ставит вид (популяцию) в состояние невозможности длительного существования. А человечество перешагнуло все не только допустимые, но теперь уже и все недопустимые пределы численности… и продолжает идти дальше. Куда? К сбросу численности до 1 млрд. И вопрос теперь переходит в чисто практическую плоскость – Как? Как он будет реализовываться, не хочется даже думать. Время для мягких решений исчерпалось 50 лет назад. Сейчас решается (пока еще «самотеком»), где и кто должен исчезнуть , и где и кто останется» (Кордюм 2003: 51–53).

    Прошу прощения за долгое цитирование, но мне нужно было показать, что в понятие «золотой миллиард» сейчас вкладывается два разных смысла: классово-идеологический (см.: Субетто 2003), и научно документированный подход к оценке оптимальной численности человечества (Горшков 1995; Goodland, Daly, Serafy 1991; Кордюм 2003).

    Читатель может принять мнение В. А. Кордюма за «страшилку». Поэтому я продолжу обсуждение ссылкой на заключение главных специалистов планеты по проблемам продовольствия Л. Брауна и К. Флавина из WorldwatchInstitute. По их данным (Браун, Флавин и др. 1992), рост производства продовольствия на душу населения закончился в 1984 году. Во время «зеленой революции» в шестидесятых он достигал 13 % в год, в восьмидесятых снизился до 9 %, а после 1988 года он падает, причем с возрастающим ускорением, по всем видам продовольствия. Так, в 2000 г. он достиг отметки 7 %, а в 2002 г. уже 13 % Соответственно численность голодных в мире поднялась к 2002 г. до 1,3 млрд человек, составив 23 % населения. Но это не все… Параллельно идет катастрофическое снижение площади пашни на душу (с 0,18 до 0,12 га), растет дефицит пресной воды , растет эрозия почв, урожайность снижается, несмотря на рост расходования минеральных удобрений и пестицидов, поверхность океанов уже на четверть площади покрыта пленкой нефти, а их продуктивность соответственно уменьшилась на 20 % . Таким образом, научный анализ эколого-демографической ситуации на Земле показывает, что жестоко ругаемый Т. Мальтус, в принципе, был прав – неконтролируемый рост численности чело-

    вечества является самой большой опасностью . Вековой спормальтузианцев и «корнукопианцев», полагающих, что ресурсыЗемли неисчерпаемы, решился в пользу первых – таково мнение ученых, как зарубежных (Миллер 1993–1996), так и отечественных (Реймерс 1992; Арский и др. 1997; и др.).

    Информационная ипостась глобализации Освоение человечеством в начале ХХ века техники радиосвязи, в середине века телевидения и, наконец, в семидесятых годах электронно-компьютерной явилось величайшим рубежом в истории цивилизации. Информация стала мгновенной и неограниченной по объему. Идет информационная революция . Стоимость компьютеров падает, по Р. Кохане и И. Ней (International Politic 2001: 10), на 19 % в год, их вычислительная мощность удваивается за 18 месяцев, а объем содержащейся в них информации – за 100 дней (!). Так или иначе, мы уже свыклись с новыми возможностями информационного мира. Подумаем о значимостиинформационной революции как геоис-торического рубежа в истории человечества. Ранг этого рубежа сопоставим с появлением письменности и даже с появлением речи. А каковы социальные последствия информационной революции для развития культуры? Они радикальны, если не катастрофичны…В самом деле, культура с появлением письменности развивалась путем чтения, то есть в процессе индивидуального образовательного труда , и поэтому всегда имела личностную специфику. С появлением телевидения и Интернета все принципиально изменилось. Теле-экран, дающий зрительную, не требующую затраты труда информацию, при этом выбранную для нас другими , является мощнейшим инструментом интеллектуального и духовного зомбирования . Работая на рынок и на массы зрителей и используя для привлечения внимания к рекламе интригующие и примитивно развлекающие сюжеты, включая секс и насилие, телевидение, хотим мы или нет, меняет и саму культуру. Она превращается в массовую («черную поп-культуру»), служащую рынку, и становится инструментом политического зомбирования. Как тут не вспомнить, что недавно экран беспрерывно вещал нам, что замена социальных льгот на выплату нескольких сот дешевеющих рублей делается якобы в наших же интересах. Таким образом, при несомненных плюсах информационной революции, бесспорно увеличившей скорость научнотехнического прогресса на порядок, она одновременно определяет и негативный тренд в развитии культуры и общества. Фактор телезомбирования, по сути, предопределяет неизбежность трансформации гражданского демократического общества в общество информационно-рыночного тоталитаризма!

    Два маленьких примера. Моему внуку во время его практики в США нужно было на два дня приехать из Вермонта в Нью-Йорк. Так его папа в Питере, пользуясь Интернетом, составил маршрут по Нью-Йорку с планом метро и всеми станциями пересадок, и внук мгновенно получил его. Второй пример. Я случайно узнаю, что мои брошюры, изданные частным порядком мизерным тиражом, продаются в Интернете. Как? Кем? Я был возмущен. Но, подумав, успокоился: Интернет – это же РЫНОК информации. И будь доволен тем, что твои идеи и обзоры имеют спрос. И еще, информационная революция принципиально по-новому разделила мир на две половины – информационно развитых и информационно отставших стран. И дело здесь не в числе компьютеров на душу. В начале девяностых 80,4 % всех компьютеров числилось, по В. Л. Иноземцеву (2000), за семью развитыми странами. И не в количестве сайтов на душу. По Р. О. Кохане, к Интернету в 2000 г. в США было подключено 40 % населения, в Германии 15 %, а в Китае только 0,1 %. По М. Г. Делягину (2003 г.), компьютерами сейчас владеет только 6 % землян, а сайтами в Интернете 2,6 %. Но эти показатели быстро изменяются. Дело в резко

    возросшей стоимости образования и науки. Если недавно стоимость высшего образования в США оценивалась в 190 тыс. долларов на студента в год, то сейчас она возросла до 250 тыс. В России образование также стало (становится) платным, и не только высшее, но уже и среднее! В то же время на Земле

    целый миллиард взрослых людей неграмотен (Глобальная экологическая перспектива). Образование стало привилегией богатых и,вместе с тем, приоритетом в государственных бюджетах передовыхстран. Характерно, что Южная Корея, вышедшая по темпам развития в мире на первое место, смогла сделать это, потому что обеспечила своим учителям самую высокую, по отношению к своемуВВП, зарплату в мире. Таков же парадокс, по А. Макхиджани(2000), штата Керала в бедной и полуграмотной Индии, добившегося под многолетним руководством коммунистов поголовной грамотности.Чтобы дать населению страны среднее образование, требуютсяусилия не менее двух поколений, как это и было в СССР. Но чтобыподнять на высокий уровень науку, а это значит обеспечить развитие научных школ , требуется не менее трех поколений. А разрушить науку можно всего за 15–20 лет, что и происходит сейчас вРоссии. В 1998 г. ассигнования на науку снизились у нас, по отношению к 1991 г., в пять раз, по данным очень тревожного обзораС. Г. Кара-Мурзы (2003), и составили всего 0,28 % ВВП (в развитых странах они колеблются от 1,5 до 4 % ВВП). Это привело к сокращению численности ученых вдвое, а объема обновляемого научного оборудования в 20–25 раз. Соответственно число заявок наизобретения сократилось, по И. Л. Андрееву (2003), в 6,6 раз, ачисло патентов в 13 раз. В итоге наши научные инновации опустились до 0,84 % мировых, а наше наукоемкое производство составляет сейчас только 5 % ВВП, по сравнению с его ростом в развитыхстранах до 90 % ВВП.

    5. Дописать ядерную реакцию и определить порядковый номер и массовое число второго ядра. Описать воздействие изотопов данной реакции на организм человека.

    90 Th 230 → 88 Ra 226 + 2 He 4

    Альфа-частицы состоят из двух протонов и двух нейтронов, частиц, из которых состоит атомное ядро. Поскольку протоны – положительно заряженные частицы, а нейтроны не несут никакого заряда, альфа-частицы обладают положительным зарядом. Они встречаются и в природе. Альфа-частицы излучают химические элементы с тяжелые ядрами, такие как уран или радий, а также те, что были получены человеком. Из-за своего относительно большого размера альфа-частицы часто сталкиваются с частицами среды и очень быстро теряют энергию. Поэтому они имеют малую проницающую способность и не способны преодолеть даже наружный слой кожи или лист бумаги.

    Однако, при попадании источника альфа-излучения внутрь организма (через дыхательные пути или в желудочно-кишечный тракт путем вдыхания или проглатывания радиоактивной пыли), такие частицы могут вызвать намного более серьезные повреждения биологической ткани, чем все прочие типы радиоактивного излучения.

    Список используемой литературы:

    1. Горелов А.А. «Концепции современного естествознания », М.: Высшее

    образование, 2006.

    2.Канке В.А. «Концепции современного естествознания», М.: «Логос», 2001.

    3.Хотунцев Ю.М. Экология и экологическая безопасность. - М.: АСADEMA,

    4.Ващекин Н.П., Лось В.А., Урсул А.Д. «Концепции современного естество –

    знания», М.: МГУК, 2000.

    Рузавин Г.И. «Концепции современного естествознания», М.: «Юнити»,

    6. Солопов Е.Ф. «Концепции современного естествознания», М.: «Владос»,

    КОНТРОЛЬНАЯ РАБОТА

    по дисциплине концепции современного естествознания

    Тема №9
    «Структурные уровни организации материи»

    План:
    Введение………………………………………………………… ….……………..2

      Роль системных представлений в анализе структурных уровней организации материи……………….……………………………………2
      Структурные уровни живого……………………………………………..6
      Сущность макромира, микромира и мегамира………………………….7
      Микромир…………………………………………………..… …………..8
      Макромир…………………………………………………..… …………11
      Мегамир…………………………………………………………… ……12
      Анализ классического и современного понимания концепции макромира……………………………………………………… …….…13
    Заключение…………………………………………………… …….…………..17

    Введение.
    Все объекты природы (живой и неживой природы) можно представить в виде системы, обладающей особенностями, характеризующей их уровни организации. Концепция структурных уровней живой материи включает представления системности и связанной с ней организацией целостности живых организмов. Живая материя дискретна, т.е. делится на составные части более низкой организации, имеющие определенные функции.
    Структурные уровни различаются не только классами сложности, но и по закономерности функционирования. Иерархическая структура такова, что каждый высший уровень не управляет, а включает низший. С учетом уровня организации можно рассматривать иерархию структур организации материальных объектов живой и неживой природы. Такая иерархия структур начинается с элементарных частиц и заканчивается живыми сообществами. Концепция структурных уровней впервые была предложена в 20-х годах нашего столетия. В соответствии с ней структурные уровни различаются не только по классам сложностью, но по закономерностям функционирования. Концепция включает в себя иерархию структурных уровней, в которой каждый следующий уровень входит в предыдущий.

      Роль системных представлений в анализе структурных уровней организации материи.
    Весь окружающий нас мир представляет собой движущуюся материю в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями. Рассмотрим подробнее, что же такое материя, а так же ее структурные уровни.
    Материя (лат. Materia – вещество), «…философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от нас».
    Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. Материя включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все те, которые в принципе могут быть познаны в будущем на основе совершенствования средств наблюдения и эксперимента.
    В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира (атом, организм, галактика и сама Вселенная) может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность.
    Основные принципы системного подхода:
      Целостность, позволяющая рассматривать одновременно систему как единое целое и в то же время как подсистему для вышестоящих уровней.
      Иерархичность строения, то есть наличие множества (по крайней мере, двух) элементов, расположенных на основе подчинения элементов низшего уровня элементам высшего уровня. Реализация этого принципа хорошо видна на примере любой конкретной организации. Как известно, любая организация представляет собой взаимодействие двух подсистем: управляющей и управляемой. Одна подчиняется другой.
      Структуризация, позволяющая анализировать элементы системы и их взаимосвязи в рамках конкретной организационной структуры. Как правило, процесс функционирования системы обусловлен не столько свойствами её отдельных элементов, сколько свойствами самой структуры.
      Множественность, позволяющая использовать множество кибернетических, экономических и математических моделей для описания отдельных элементов и системы в целом.
    Системность, свойство объекта обладать всеми признаками системы.
    Для обозначения целостности объектов в науке было выработано понятие «система».
    Система - это комплекс элементов, находящихся во взаимодействии. В переводе с греческого это целое, составленное из частей, соединение.
    Понятие «элемент» означает минимальный, далее уже неделимый компонент в рамках данной системы. Система может состоять не только из однородных объектов, но и разнородных. Она может быть по своему строению простой и сложной. Сложная система состоит из элементов, которые в свою очередь образуют подсистемы разного уровня сложности и иерархии.
    Каждая система характеризуется не только наличием связей и отношений между образующими ее элементами, но и неразрывным единством с окружающей средой.
    Можно выделить различные типы систем:
      по характеру связи между частями и целым - неорганические и органические;
      по формам движения материи - механические, физические, химические, физико-химические;
      по отношению к движению - статистические и динамические;
      по видам изменений - нефункциональные, функциональные, развивающиеся;
      по характеру обмена со средой - открытые и закрытые;
      по степени организации - простые и сложные;
      по уровню развития - низшие и высшие;
      по характеру происхождения - естественные, искусственные, смешанные;
      по направлению развития - прогрессивные и регрессивные.
    Совокупность связей между элементами образует структуру системы.
    Устойчивые связи элементов определяют упорядоченность системы. Существуют два типа связей между элементами системы – по «горизонтали» и по «вертикали».
    Связи по «горизонтали» - это связи координации между однопорядковыми элементами. Они носят коррелирующий характер: ни одна часть системы не может изменяться без того, чтобы не изменились другие части.
    Связи по «вертикали» - это связи субординации, то есть соподчинения элементов. Они выражают сложное внутреннее устройство системы, где одни части по своей значимости могут уступать другим и подчиняться им. Вертикальная структура включает уровни организации системы, а так же их иерархию.
    Следовательно, исходным пунктом всякого системного исследования является представление именно о целостности изучаемой системы.
    Целостность системы означает, что все составные части, взаимодействуя и соединяясь вместе, образуют уникальное целое, обладающее новыми системными свойствами.
    Свойства системы – не просто сумма свойств ее элементов, а нечто новое, присущее только системе в целом.
    Итак, согласно современным научным взглядам на природу, все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы.
    В естественных науках выделяют два больших класса материальных систем: системы неживой природы и системы живой природы.
    К системам неживой природы относятся элементарные частицы и поля, физический вакуум, атомы, молекулы, макроскопические тела, планеты и планетные системы, звезды, галактики и система галактик – Метагалактика.
    К системам живой природы относятся биополимеры (информационные молекулы), клетки, многоклеточные организмы, популяции, биоценозы и биосфера как совокупность всех живых организмов.
    В природе все взаимосвязано, поэтому можно выделить и такие системы, которые включают в себя элементы как живой, так и неживой природы – биогеоценозы, и биосферу Земли.
      Структурные уровни живого.
    Структурный, или системный, анализ обнаруживает, что мир живого чрезвычайно многообразен, имеет сложную структуру. На основе равных критериев могут быть выделены различные уровни, или подсистемы, живого мира. Наиболее распространенным является выделение на основе критерия масштабности следующих уровней организации живого.
    Биосферный – включающий всю совокупность живых организмов Земли вместе с окружающей их природной средой. На этом уровне биологической наукой решается такая проблема, как изменение концентрации углекислого газа в атмосфере. Используя это подход, ученые выяснили, что в последнее время концентрация углекислого раза возрастает ежегодно на 0,4%, создавая опасность глобального повышения температуры, возникновения так называемого «парникового эффекта».
    Уровень биоценозов выражает следующую ступень структуры живого, состоящую из участков Земли с определенным составом живых и неживых компонентов, представляющих единый природный комплекс, экосистему. Рациональное использование природы невозможно без знания структуры и функционирования биогеоценозов, или экосистем.
    Популяционно-видовой уровень образуется свободно скрещивающимися между собой особями одного и того же вида. Его изучение важно для выявления факторов, влияющих на численность популяций.
    Организменный и органно-тканевый уровни отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живых существ.
    Клеточный и субклеточный уровниотражают процессы специализации клеток, а также различные внутриклеточные включения.
    Молекулярный уровень составляет предмет молекулярной биологии, одной из важнейших проблем которой является изучение механизмов передачи генной информации и развитие генной инженерии и биотехнологии.
    Разделение живой материи на уровни является, конечно, весьма условным. Решение конкретных биологических проблем, таких, как регуляция численности вида, опирается на данные о всех уровнях живого. Но все биологи согласны в том, что в мире живого существуют ступенчатые уровни, своего рода иерархии. Представление о них наглядно отражает системный подход в изучении природы, который помогает глубже понять ее.
    Фундаментальной основой живого мира, является клетка. Ее исследование помогает уяснить специфику всего живого.
      Сущность макромира, микромира и мегамира.
    Структурные уровни материи образованы из определенного множества объектов какого-либо класса и характеризуются особым типом взаимодействия между составляющими их элементами.
    Критерием для выделения различных структурных уровней служат следующие признаки:
      пространственно-временные масштабы;
      совокупность важнейших свойств;
      специфические законы движения;
      степень относительной сложности, возникающей в процессе исторического развития материи в данной области мира;
      некоторые другие признаки.
    Все объекты, которые исследует наука, относятся к трем «мирам» (микромир, макромир и мегамир), которые и представляют собой уровни организации материи.


    Микромир.
    Приставка «микро» означает отношение к очень малым размерам. Таким образом, можно сказать, что микромир – это что-то небольшое.
    Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная размерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечности до 10 -24 секунд.
    В философии в качестве микромира изучается человек, а в физике, концепции современного естествознания в качестве микромира изучаются молекулы.

    Микромир имеет свои особенности, которые можно выразить так:
    1) единицы измерения расстояния (м, км и т. д.), используемые человеком, применять просто бессмысленно;
    2) единицы измерения веса человека (г, кг, фунты и т. д.) применять также бессмысленно.
    Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII веке была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов.
    Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX веке Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе.
    В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX века, когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов.
    История исследования строения атома началась в 1895 году благодаря открытию Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов.

    Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.
    Существовало несколько моделей строения атома.
    В 1902 году английский физик У. Томсон (лорд Кельвин) предложил первую модель атома - положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг».
    В 1911 году Э. Резерфорд предложил модель атома, которая напоминала солнечную систему: в центре находится атомное ядро, а вокруг него по своим орбитам движутся электроны.
    Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

    Обе эти модели оказались противоречивы.
    В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.
    Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:
    1) в каждом атоме существует несколько стационарных состояний.
    2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

    В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует.
    Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.
    Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

    Макромир.
    Естественно, есть объекты, которые по своим размерам гораздо больше объектов микромира. Эти объекты и составляют макромир. Макромир «населяют» только те объекты, которые по своим размерам соизмеримы с размерами человека. К объектам макромира можно отнести и самого человека
    Макромир имеет довольно сложную организацию. Его самый маленький элемент – атом, а самая большая система – планета Земля. В его состав входят как неживые системы, так и живые системы различного уровня. Каждый уровень организации макромира содержит как микроструктуры, так и макроструктуры. Например, молекулы вроде бы должны относится к микромиру, поскольку они нами непосредственно не наблюдаются. Но, с одной стороны, самая большая структура микромира – атом. А у нас есть сейчас возможность видеть с помощью микроскопов последнего поколения даже часть атома водорода. С другой стороны, есть огромные молекулы, чрезвычайно сложные по своему строению, например, ДНК ядра может быть длинной почти в один сантиметр. Подобная величина уже вполне сопоставима с нашим опытом, и если бы молекула была толще, мы бы ее увидели невооруженным глазом.
    Все вещества, находящиеся в твердом или жидком состоянии, состоят из молекул. Молекулы образуют и кристаллические решетки, и руды, и скалы, и другие объекты, т.е. то, что мы можем почувствовать, увидеть и т.д. Однако, несмотря на такие огромные образования, как горы и океаны, - это все молекулы, связанные между собой. Молекулы – новый уровень организации, они все состоят из атомов, которые в этих системах рассматриваются как неделимые, т.е. элементы системы.
    Как физический уровень организации макромира, так и химический уровень имеют дело с молекулами и различными состояниями вещества. Однако химический уровень значительно более сложный. Он не сводится к физическому, рассматривающему строение веществ, их физические свойства, движение (все это было исследовано в рамках классической физики) хотя бы по сложности химических процессов и реакционной способности веществ.
    На биологическом уровне организации макромира, кроме молекул, мы обычно не можем без микроскопа разглядеть и клетки. Но ведь есть клетки, которые достигают огромной величины, например аксоны нейронов осьминогов длинной в один метр и даже больше. Вместе с тем все клетки имеют определенные сходные черты: они состоят из мембран, микротрубочек, у многих есть ядра и органеллы. Все мембраны и органеллы в свою очередь состоят из гигантских молекул (белков, липидов и др.), а эти молекула состоят из атомов. Поэтому как гигантские информационные молекулы (ДНК, РНК, ферменты), так и клетки – это микроуровни биологического уровня организации материи, включающего и такие огромные образования, как биоценозы и биосфера.

    Мегамир.
    Мегамир – это мир объектов, которые несоизмеримо больше человека.
    Вся наша Вселенная – это мегамир. Ее размеры огромны, она безгранична и постоянно расширяется. Вселенную заполняют объекты, которые значительно больше нашей планеты Земля и нашего Солнца. Нередко бывает, что разница между какой-либо звездой за пределами Солнечной системы в десятки раз превосходит Землю.
    Мегамир, или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию в форме планет и планетных систем, возникающих вокруг звезд, звезд и звездных систем - галактик; системы галактик - Метагалактики.
    Исследование мегамира тесно связано с космологией и космогонией.
    Космогония – это раздел науки астрономии, который изучает происхождение галактик, звезд, планет, а также других объектов. На сегодня космогонию можно разделить на две части:
    1) космогония Солнечной системы. Эту часть (или вид) космогонии по-другому называют планетной;
    2) звездная космогония.
    И хотя на всех этих уровнях действуют свои специфические закономерности, микромир, макромир и мегамир теснейшим образом взаимосвязаны.

      Анализ классического и современного понимания концепции макромира.
    В истории изучения природы можно выделить два этапа: донаучный и научный. Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествознания в XVI-XVII веках. В этот период учения о природе носили чисто натурфилософский характер: наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.
    Наиболее значимой для последующего развития естественных наук была концепция дискретного строения материи - атомизм, согласно которому все тела состоят из атомов -мельчайших в мире частиц.
    Исходными началами в атомизме выступали атомы и пустота. Сущность протекания природных процессов объяснялась на основе механического взаимодействия атомов, их притяжения и отталкивания.
    Поскольку современные научные представления о структурных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начинать исследование нужно с концепций классической физики.
    И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.
    Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики. Считалось, что все физические процессы можно свести к перемещению материальных точек под действием силы тяготения, которая является дальнодействующей
    Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлении, которые не могли быть полностью объяснены в рамках механистической картины мира.
    Разрабатывая оптику, И. Ньютон, следуя логике своего учения, считал свет потоком материальных частиц – корпускул. В корпускулярной теории света И. Ньютона утверждалось, что светящиеся тела излучают мельчайшие частицы, которые движутся в согласии с законами механики и вызывают ощущение света, попадая в глаз. На базе этой теории И. Ньютоном было дано объяснение законам отражения и преломления света.
    Наряду с механической корпускулярной теорией, осуществлялись попытки объяснить оптические явления принципиально иным путем, а именно - на основе волновой теории, сформулированной Х. Гюйгенсом. Главным аргументом в пользу своей теории Х.Гюйгенс считал тот факт, что два луча света, пересекаясь, пронизывают друг друга без каких-либо помех в точности, как два ряда волн на воде.
    Согласно же корпускулярной теории, между пучками излученных частиц, каковыми является свет, возникали бы столкновения или, по крайней мере, какие-либо возмущения. Исходя из волновой теории Х. Гюйгенс успешно объяснил отражение и преломление света.
    Однако против нее существовало одно важное возражение. Как известно, волны обтекают препятствия. А луч света, распространяясь по прямой, обтекать препятствия не может. Если на пути луча света поместить непрозрачное тело с резкой гранью, то его тень будет иметь резкую границу. Однако это возражение вскоре было снято благодаря опытам Гримальди. При более тонком наблюдении с использованием увеличительных линз обнаруживалось, что на границах резких теней можно видеть слабые участки освещенности в форме перемежающихся светлых и темных полосок или ореолов. Это явление было названо дифракцией света.
    Волновая теория света была вновь выдвинута в первые десятилетия ХІХ века английским физиком Т. Юнгом и французским естествоиспытателем О. Ж. Френелем. Т. Юнг дал объяснение явлению интерференции, т.е. появлению темных полосок при наложении света на свет. Суть ее можно описать с помощью парадоксального утверждения: свет, добавленный к свету, не обязательно дает более сильный свет, но может давать более слабый и даже темноту. Причина этого заключается в том, что согласно волновой теории, свет представляет собой не поток материальных частиц, а колебания упругой среды, или волновое движение. При наложении друг на друга цепочек волн в противоположных фазах, где гребень одной волны совмещается с впадиной другой, они уничтожают друг друга, в результате чего появляются темные полосы.
    Другой областью физики, где механические модели оказались неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М.Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушали представления ньютоновской физики о дискретном веществе, как единственном виде материи и положили начало электромагнитной картине мира. Явление электромагнетизма открыл датский естествоиспытатель Х.К.Эрстед, который впервые заметил магнитное действие электрических токов.
    Позже М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Его работы стали исходным пунктом исследований Дж.К.Максвелла, заслуга которого состоит в математической разработке идей М.Фарадея о магнетизме и электричестве.
    Обобщив установленные ранее экспериментальным путем законы электромагнитных явлений (Кулона, Ампера) и открытое М.Фарадеем явление электромагнитной индукции, Максвелл чисто математическим путем нашел систему дифференциальных уравнений, описывающих электромагнитное поле. Эта система уравнений дает в пределах своей применимости полное описание электромагнитных явлений и представляет собой столь же совершенную и логически стройную теорию, как и система ньютоновской механики.
    Из уравнений следовал важнейший вывод о возможности самостоятельного существования поля, не «привязанного» к электрическим зарядам. В
    и т.д.................

    В чем заключается понятие "материя"? Что такое атрибуты материи?

    Материя - объективная реальность, которая дана человеку в его ощущениях и существует независимо от него. Это некая субстанция, основа всех существующих объектов и систем, их свойств, связей между ними и форм движения, т.е. то из чего состоит окружающий мир.

    Структура материи - существование бесконечного многообразия целостных систем тесно, связанных между собой.

    Атрибутами материи , всеобщими формами её бытия являются движение, пространство и время, которые не существуют вне материи. Точно так же не может быть и материальных объектов, которые не обладали бы пространственно-временными свойствами.

    Пространство - объективная реальность, форма существования материи, характеризуется протяженностью и структурностью материальных объектов (явлений) в их соотношении с другими объектами и явлениями.

    Время - объективная реальность, форма бытия материи характеризуется длительностью и последовательностью существования материальных объектов и явлений в их соотношении с другими материальными объектами и явлениями.

    Фридрих Энгельс выделил пять форм движения материи : физическая; химическая; биологическая; социальная; механическая.

    Универсальными свойствами материи являются:

    несотворимость и неуничтожимость

    вечность существования во времени и бесконечность в пространстве

    материи всегда присущи движение и изменение, саморазвитие, превращение одних состояний в другие

    детерминированность всех явлений

    причинность — зависимость явлений и предметов от структурных связей в материальных системах и внешних воздействий, от порождающих их причин и условий

    отражение — проявляется во всех процессах, но зависит от структуры взаимодействующих систем и характера внешних воздействий. Историческое развитие свойства отражения приводит к появлению высшей его формы — абстрактного мышления

    Универсальные законы существования и развития материи:

    Закон единства и борьбы противоположностей

    Закон перехода количественных изменений в качественные

    Закон отрицания отрицания

    структурные уровни организации материи в неживой природе.

    На каждом структурном уровне материи существуют особые (эмерджентные) свойства , отсутствующие на других уровнях. Внутри каждого из структурных уровней существуют отношения субординации, например, молекулярный уровень включает атомарный, а не наоборот. Всякая высшая форма возникает на основе низшей, включает ее в себя в снятом виде. Это означает, по существу, что специфика высших форм может быть познана только на основе анализа структур низших форм. И наоборот, сущность формы низшего порядка может быть познана только на основе содержания высшей по отношению к ней формы материи.

    В естественных науках выделяются два больших класса материальных систем: системы неживой природы и системы живой природы . В неживой природе структурными уровнями организации материи являются:

    1)вакуум(поля с минимальной энергией), 2)поля и элементарные частицы, 3)атомы, 4)молекулы,макротела, 5)планеты и планетные системы, 6)звезды и звездные системы,7) галактика,8)метагалактика, 9)Вселенная.

    В живой природе выделяют два важнейших структурных уровня организации материи - биологический и социальный. Биологический уровень включает:

    доклеточный уровень (белки и нуклеиновые кислоты);

    • клетку как "кирпичик" живого и одноклеточные организмы;
    • многоклеточный организм, его органы и ткани;
    • популяцию - совокупность особей одного вида, занимающих определенную территорию, свободно скрещивающихся между собой и частично или полностью изолированных от других групп своего вида;
    • биоценоз - совокупность популяций, при которой продукты жизнедеятельности одних являются условиями существования других организмов, населяющих определенный участок суши или воды;
    • биосферу - живое вещество планеты (совокупность всех живых организмов, включая человека).

    На определенном этапе развития жизни на Земле возник разум, благодаря которому появился социальный структурный уровень материи. На этом уровне выделяются: индивид, семья, коллектив, социальная группа, класс и нация, государство, цивилизация, человечество в целом.

    структурные уровни организации материи в живой природе.

    Согласно современным научным взглядам на природу, все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы. В естественных науках выделяются два больших класса материальных систем: системы неживой природы и системы живой природы.

    В живой природе к структурным уровням организации материи относят системы доклеточного уровня-нуклеиновые кислоты и белки; клетки как особый уровень биологической организации, представленные в форме одноклеточных организмов и элементарных единиц живого вещества; многоклеточные организмы растительного и животного мира; над организменные структуры, включающие в себя виды, популяции и биоценозы и, наконец, биосферу как всю массу живого вещества. В природе все взаимосвязано, поэтому можновыделить такие системы, которые включают в себя элементы как живой, так и неживой природы-биогеоценозы.

    Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта.Применяя системный подход, естествознание не просто выделяет типы материальных систем, а раскрывает их связь и соотношение. В науке выделяются три уровня строения материи макромир, микромир и мегамир.

    Любое членение мира на составные части условны, как условна любая граница, разделяющая его части. Условны понятия и схемы, которые важны для нас как нечто, лежащее в основании созданной нами условности, которая потом властвует над нашим воображением по принципу созданной нами азбуки. Но именно из неё создается стройная система языка и понятий, утверждающих единство ее структуры, единство Мира, состоящего из ограниченного числа атомов в Периодическом законе.

    Привычное деление мира на микро- и макромир также условно, поскольку слишком велики различия между объектами этих иерархических ступеней. Поэтому мы предложим еще одну систему, поскольку она нам кажется лучше. Другие же найдут в ней нечто такое, что заставит их построить свою, которая им покажется более отвечающей потребности исследователя в её детализации для осмысления картины Мира.

    Под структурой (от латинского слова structure – строение, порядок, расположение) понимается закономерное пространственное расположение единичного в целом, как совокупность устойчивых связей элементарных частей объекта, обеспечивающих его целостность и тождественность самому себе, сохранение его основных свойств под влиянием внутренних и внешних сил.

    Структура вселенной, например, представлена закономерным пространственным расположением и устойчивыми связями галактик, скоплений галактик и т.д. Структура галактик состоит из закономерно расположенных в них и устойчивых связей звезд и звездных скоплений. Структура звездной системы (например, Солнечной) представляет собой закономерное расположение и устойчивость связей планет, астероидов и т.д. Структура живого и неживого вещества представляет собой закономерное пространственное расположение и устойчивость связей атомов, молекул. Структура атома характеризуется закономерным расположением и устойчивостью связей частиц, расположенных вокруг ядра и внутри него.

    Основными принципами системы являются:

      ее целостность (принципиальная несводимость свойств системы к сумме свойств ее элементов);

      структурность (закономерность связей и отношений элементов системы);

      взаимозависимость системы от коллективных внутренних (обусловленных структурой) сил и свойств окружающей среды;

      соподчиненность или иерархичность (каждый элемент системы может рассматриваться как подсистема свойств системы другого уровня);

      множественность описания каждой системы на основе множества слагающих ее подсистем, свойств, отношений этих свойств.

    Структурные уровни организации материи могут быть представлены схемой, таблица 2.1.5-1.

    Микромир неживой материи Квантовый мир. Мир частиц. Мир структуры атомов. Мир молекул, элементарных ячеек кристаллических структур и текстур, мир молекул жидкостей, газов, заряженных ионов плазмы.
    Микромир живого вещества Мир структуры клетки , нуклеотидов и белков. Мир бактерий и вирусов.
    Мезомир неживой материи Мир окружающей действительности человека, с которым связана его повседневная жизнь. Мир минералов, пород, слоев Земли, ландшафтов, биосферы. Искусственно созданный материальный мир. Мир Земли, как планеты Солнечной системы
    Мезомир живого Мир насекомых, животных и растений, популяций, экосистем окружающих повседневную жизнь человека.
    Макромир Мир структуры Солнечной системы: Солнца, планет и составляющих элементов структуры Солнечной системы.
    Мегамир Мир структуры нашей галактики и Метагалактики (видимой части вселенной)
    Супермир? Мир структуры взаимодействующих вселенных (?). Множество миров

    Таблица 2.1.5-1

    Как видим, такое членение на семь иерархических уровней мира условно, как условны и границы подразделений. Граница – это мир условностей, которые меняются под влиянием познания действительного мира. Например, границы микромира и макромира в существующей иерархии определяются разрешающей способностью глаза. С помощью созданных технических средств, приборов и других физических устройств человек смог заглянуть в структуру микромира, макромира и мегамира. Наличие супермира, как совокупности взаимодействующих вселенных, предполагается концепцией множественности миров, выдвинутой ещё Д.Бруно. Отсюда подсистемы окружающего нас материального мира слагают единую бесконечную в пространстве-времени систему или структуру Супермира.

    Условность и необходимость подразделений мира на его составные элементы исходит из необходимости познать мир по частям и в целом. В процессе познания расширяются представления о границах подразделений. Например, границы мезомира в процессе развития человека и его сознания также непрерывно расширяются. На заре человеческой цивилизации – это он сам и его мир естественной окружающей его природной среды. Позже появляются искусственные орудия труда, машины, созданные самим человеком. Потом человек выходит в ближайший космос, и его окружающей действительностью являются объекты околоземного пространства, затем, в отдаленном будущем, всей Солнечной системы. То есть, постепенно мезомир расширяет свои границы до объектов макромира. С развитием космических путешествий за пределы Солнечной системы объектом окружающего мира может служить и мегамир. Пионер-10, творение человека, вышел за пределы Солнечной системы и уже находится в структуре Млечного Пути – нашей галактики.

    Удивительно, но человеческий разум способен создавать и виртуальный мир, в котором может путешествовать, испытывать наслаждение от открытий, страдать, любить и ненавидеть. Граница виртуального и действительного мира также условна и скоротечна, насколько мы можем быстро перейти от теоретических рассуждений об устройстве мира к практическим реализациям идей на основе опыта.

    Поразителен также факт неразделимости живой и неживой материи на всех уровнях ее организации. «Живое – от живого!». Гласит принцип Пастера-Редди. Но живое возникло из неживого и является следствием эволюции неживого!

    Если существует микромир, мезомир и макромир живой материи, то логически Млечный путь (наша галактика), имея жизнь в Солнечной системе, сама является носителем жизни. Подобные рассуждения приведут нас к мысли о том, что жизнь является принадлежностью всей вселенной. Именно с появлением разума на Земле Метагалактика перешла в новое качество – стала разумной.

    Составные элементы живого (атомы, молекулы) представляют собой каждый в отдельности неживое вещество. Если разобрать живое на атомы, то последующей операцией сборки атомов невозможно создать живое. Для этого необходима вся история эволюции живого и неживого действительного окружающего мира вселенной. В этом заключается один из парадоксов членения мира на живую и неживую его составляющие. Скорее надо предположить, что все вещество во вселенной просто пронизано элементами, способными к собственной самоорганизации под названием жизнь, чем разделять понятия живого и неживого. Сама же вселенная представляет собой развивающееся и непрерывно совершенствующееся единство бесконечно малого (нечто) и бесконечно большого (всего).

    Материя структурирована не только движением, пространством, временем, формой, но и размерностью, уровнем организации. Но если движение, пространство и время в материальном мире являются непременным атрибутом сосуществования, то уровень организации материи есть классификационный принцип, удобный для расчленения (дробления) признаков существования материального мира с целью его дискретного познания путем последовательного приближения от частного к общему или наоборот.

    Иерархические уровни организации вещества в естественнонаучных дисциплинах разные. В органическом мире они разделяются на классы, типы, группы, семейства, рода, виды. В неорганическом мире иерархические уровни отвечают комплексам, формациям, породам, минеральным видам и т.д. Причем границы этого разделения, повторяем, весьма условны и определяются необходимостью получения информации о структурированной единице (части), изучением свойства которой, трансляции её в четырёхмерном пространстве мы можем понять, как устроено целое.

    Иерархия (от греч. hieros - священный и arche – власть). Расположение совокупности элементов в порядке от высшего к низшему рангу. Способ устройства сложных систем, при котором звенья системы распределены по различным уровням в соответствии с заданным критерием.

    Два иерархических уровня организации материи – микро- и макромир (микрокосм и макрокосм) издавна разграничиваются естественными науками, поскольку в них проявляются формы движения несколько по-иному. Возникают новые взаимодействия. Но и это деление материального мира является условным. Ибо макромир состоит из структурированного вещества микромира бесконечно транслируемого в пространстве-времени всё существующее и будущее многообразие явлений, состояний, движений объектов.

    Уже в древности существовала идея о микро- и макрокосме. Микрокосм – мир человека, макрокосм – вся Природа. Это как бы живые существа, созданные по единому образцу и наделенные единой душой… Уже в древности существовал принцип, что человек является мерой всех вещей, поскольку люди видели в строении его тела гармонию, и эту гармонию переносили на измеряемый ими мир через пропорции человеческого тела. Так было создано одно из чудес света – Парфенон, над разгадкой гармонии которого так долго бьются строители и архитекторы.

    Микрокосм и макрокосм (от греч., большой мир - вселенная и малый мир – человек). Натурфилософы XVI в., в особенности Парацельс, рассматривали вселенную как человеческий организм в увеличенном виде, а человека как вселенную в миниатюре и выводили отсюда, что между вселенной и человеком существует такая же связь, как и между членами одного телесного организма, и почему, например, звезды могут иметь влияние на судьбу человека.

    Последовательность расположения объектов во Вселенной по структурным уровням материи (СУМ) предполагает существование структурной организации сложных многоуровенных систем. Она проявляется в упорядочении взаимодействий между СУМ от высшего к низшему порядку. Предложена в работе Б.П. Иванова , таблица 2.1.5-2.

    Исходя из общего принципа единства мироустройства, современная наука на основе экспериментальных достижений описывает материю в диапазоне от 1∙10 -18 до 1∙10 26 м. Она проявляет себя как в форме конкретных объектов, так и среды.

    Поиски фундаментальных закономерностей, которые бы позволили структурировать мир таким образом, чтобы стало возможным предсказание любого исторического уровня его организации, продолжаются. С развитием квантовой механики, мир неожиданно представился «Летучим Голландцем», когда оказалось нельзя однозначно определиться в его реальных границах ни в пространстве, ни во времени. В границах так необходимых нам в привычном для нас макромире в силу двойственности природы микромира . Мир в пространстве микромира оказался «размазанным», а границы его выглядели настолько условными, что возникла необходимость для описания взаимодействий между его частицами прибегнуть к виртуальным частицам, «рождение» которых одновременно бы совпадало с их «смертью». И притом они успевали быть передаточным звеном такого взаимодействия.

    По представлениям Б.П.Иванова материя оказывается «не размазана», а группируется в пространстве определенным образом. Система материи состоит из сгустка (ядра) и окружающего его физического поля, находящиеся в определенных отношениях и связях друг с другом, образующих некую целостность (единство). Такая система материи названа им организационной формой материи (ОФМ) или локализованным объектом вселенной. Автор в строении материи проводит аналогию между строением частиц, атомов, звезд, галактик. То есть, на любом уровне организации материи, будь-то частица, атом, звезда или галактика определенно существует ядро и физическое поле, объединенные в одну единую систему организационной формы материи, которая является фундаментальной единицей всего известного мироздания, включая вселенную.

    Группу организованных форм материи, имеющих одно общее свойство, например, электрический заряд у ядер атомов элементов таблицы Д.И.Менделеева, автор объединяет в один структурный уровень материи (СУМ).

    Всю совокупность СУМ он вмещает в следующую иерархию, состоящую из элементов:

    • элементарные частицы;
    • ядра;
    • атомы;
    • молекулы;
    • кристаллы;
    • пыль;
    • микрометеороиды;
    • метеороиды;
    • кометы;
    • астероиды;
    • планеты;
    • звезды; скопления звезд;
    • шаровые скопления;
    • галактики;
    • скопления галактик;
    • сверхскопления галактик;

    Метагалактика.

    • Это также весьма условная иерархия. Поскольку она может быть дополнена, например, последовательным рядом:
    • кристалл, элементарная ячейка которого состоит из атомов или ионов, транслируемых по кристаллографическим направлениям;
    • минерал (состоящий из совокупности атомов, ионов, молекул);
    • порода (как совокупность слагающих ее различных минералов);
    • пыль (как совокупность кристаллов, минералов, пород разного состава) и т.д.;
    • формации, как сообщество геологических тел, объединяемые в парагенетическом, генетическом или в каком-то ином отношении, состоящие из пород, руд, минералов и т.д.

    Материальным объектом галактики являются и релятивистские объекты так называемых черных дыр и т.д.

    Тем не менее, в предлагаемой иерархии Б.П.Иванова прослеживается определенная закономерность. Между структурными уровнями материи наблюдаются скачкообразные изменения их обобщенных качественных характеристик, что позволило автору использовать в этой иерархии модель «квантовой лестницы», на ступеньках которой размещаются структурные уровни материи.

    В пределах одной ступени структурный уровень материи по Б.П.Иванову состоит из трех подуровней. В каждом подуровне наблюдается регулярная повторяемость свойств объектов по мере роста радиуса ядра ОФМ вследствие семикратной бифуркации. Свойство структурности в иерархии СУМ наследуют структурные уровни нижних ступеней. Например, Метагалактика состоит из сверхскоплений галактик, любая галактика в свою очередь состоит из звездных скоплений и т.д. вплоть к элементарным частицам. То есть в основе материи лежит понятие об элементарной части, которая повторяется, транслируется в пространстве-времени, в результате чего формируется целое: вещество и структура мира.

    Структурные уровни организации материи по Б.П.Иванову

    Номер СУМ Структурные уровни материи Верхние и нижние границы радиуса ядер ОФМ, м Средние геометрические радиусы скоплений ОФМ,м Кинетическая энергия скоплений ОФМ, Дж Собственные частоты скоплений, Гц
    21.0 К вышестоящим уровням материи
    20.0 Квазары 6,88·10 41 - 5,38·10 39 6,08·10 40 4,5·10 61 2,53·10 -60
    19.0 Радиогалактики 4,2·10 37 4,25·10 38 3,12·10 58 3,67·10 -57
    18.0 Сверхскопления галактик 3,2810 35 3,71·10 36 2,15·10 55 5,32·10 -54
    17.0 Скопления галактик 2,56·10 33 2,9·10 34 1,49·10 52 7,7·10 -51
    16.0 Кратные галактики 2,0·10 31 2,26·10 32 1,03·10 48 1,11·10 -47
    15.0 Гипергалактики 1,56·10 29 1,17·10 30 7,1·10 45 1,61·10 -44
    14.0 Галактики 1,22·10 27 1,38·10 28 4,9·10 42 2,32·10 -41
    13.0 Субгалактики 9,55·10 24 1,08·10 26 3,38·10 39 3,39·10 -38
    12.0 Гипершаровые скопления 7,46·10 22 8,44·10 23 2,33·10 36 4,9·10 -35
    11.0 Шаровые скопления звезд 5,83·10 20 6,59·10 21 1,61·10 33 7,1·10 -32
    10.0 Субшаровые скопления звезд 4,55·10 18 5,1·10 19 1,11·10 30 1,03·10 -28
    9.0 Рассеянные скопления звезд 3,56·10 16 4,0·10 17 7,69·10 26 1,49·10 25
    8.0 Кратные звезды 2,78·10 14 3,14·10 15 5,3·10 23 2,16·10 -22
    7.0 Гиперзвезды 2,17·10 12 2,43·10 13 3,66·10 20 3,1·10 -19
    6.0 Звезды 1,7·10 10 1,92·10 11 2,53·10 17 4,52·10 -16
    5.0 Субзвезды 1,33·10 8 1,5·10 9 1,75·10 14 6,55·10 -13
    4.0 Планеты 1,04·10 6 1,17·10 7 1,2·10 11 9,49·10 -10
    3.0 Астероиды 8092 9,15·10 4 8,33·10 7 1,37·10 -6
    2.0 Кометы 63,22 715 5,76·10 4 1,99·10 -3
    1.0 Глыбы-гиперметеороиды 0,494 5,588 39,75 2,88
    .0.1 Гравий-метеороиды 0,39·10 -3 4,36·10 -2 2,74·10 -2 4172
    .0.2 Песок-миллиметеороиды 3,0·10 -5 3,41·10 -4 1,89·10 -5 6,04·10 6
    .0.3 Алеврит-микрометеороиды (пыль) 2,35·10 -7 2,66·10 -6 1,3·10 -8 1,99·10 9
    .0.4 Кристалл 1,84·10 -9 2,08·10 -8 9,04·10 -12 1,27·10 13
    .0.5 Кластеры 1,44·10 -11 1,63·10 -10 6,24·10 -15 1,83·10 16
    .0.6 Молекулы 1,12·10 -13 1,27·10 -12 4,31·10 -18 2,66·10 19
    .0.7 Атомы 8,77·10 -16 9,95·10 -15 2,98·10 -21 3,85·10 22
    .0.8 Нуклиды 6,85·10 -18 7,76·10 -17 2,05·10 -24 5,57·10 25
    .0.9 Протоны 5,35·10 -20 6,06·10 -19 1,42·10 -27 8,0·10 28
    .0.10 Электроны 4,18·10 -22 4,73·10 -21 9,8·10 -31 1,17·10 32
    .0.11 Позитроны 3,27·10 -24 3,7·10 -23 6,77·10 -34 1,69·10 35
    .0.12 Субэлектроны 2,55·10 -26 2,9·10 -25 4,67·10 -37 2,45·10 38
    .0.13 γ- кванты 1,7·10 -28 2,26·10 -27 3,22·10 -40 3,55·10 41
    .0.14 Рентгеновские лучи 1,56·10 -30 1,76·10 -29 2,22·10 -43 5,14·10 44
    .0.15 Видимые лучи 1,22·10 -32 1,38·10 -31 1,53·10 -46 7,44·10 47
    .0.16 СВЧ и ВЧ 9,5·10 -35 1,08·10 -33 1,06·10 -49 1,08·10 51
    .0.17 Средние радиоволны 7,43·10 -37 8,4·10 -36 7,3·10 -53 1,56·10 54
    .0.18 Длинные радиоволны 5,80·10 -39 6,57·10 -38 5,05·10 -56 2,26·10 57
    .0.19 Низкие частоты 4,50·10 -41 5,1·10 -40 3,49·10 -62 3,27·10 60
    .0.20 Инфракрасные частоты 3,50·10 -43 4,0·10 -42 2,41·10 -62 4,74·10 63
    .0.21 21 cлой (СУМ) 2,77·10 -45 3,1·10 -44 1,66·10 -65 6,85·10 66
    .0.22 22 2,16·10 -47 2,4·10 -46 1,15·10 -68 9,94·10 69
    .0.23 23 1,69·10 -49 1,9·10 -48 7,94·10 -72 1,44·10 73
    .0.24 24 1,32·10 -51 1,5·10 -50 5,48·10 -75 2,08·10 76
    .0.25 25 1,0·10 -53 1,2·10 -52 3,78·10 -78 3,02·10 79
    .0.26 26 8,00·10 -56 9,1·10 -55 2,61·10 -81 4,37·10 82
    .0.27 27 6,30·10 -57 7,1·10 -57 1,8·10 -84 6,33·10 85
    .0.28 28 4,90·10 -60 5,5·10 -59 1,25·10 -87 9,17·10 88
    К внутренним структурным уровням материи и к ее эфиру

    Таблица 2.1.5-2

    По выше приведенным табличным данным Б.П.Ивановым граница микрокосма (внутреннего мира) и макрокосма определяется числом после.0., .0.1 и т.д. В микрокосм, таким образом, вошли структуры, начиная от гравийных частиц, песка, алеврита и меньшей размерности. Достоинство выше приведенной структурной иерархии на основе идеи организационной формы материи заключается в возможности определения дискретных границ размерности материального мира путем деления на коэффициент подобия равным числу 128 (для микрокосма) и путем умножения на этот же коэффициент (для макрокосма). Таким образом, микромир по Б.П. Иванову вполне дискретен и поддается граничному структурированию, но на границах микроструктур их свойства меняются скачкообразно.

    Макрокосм для Земли в этой классификации начинается с околоземного пространства и распространяется на всю внешнюю часть вселенной.

    Иерархический подход Б.П.Иванова хорош для описания научной картины мира. Он несколько будет смущать обывателя в той части, что подобное членение материального мира, хотя и охватывает все многообразие закономерно изменяющихся его свойств и структур, но не дает возможности образно выделить иерархическую соподчиненность, с которой обычно имеет дело сознание человека. Он чаще меряет не числом, а соотносимым масштабом, способностью разрешения глаза или осознанием размерности на уровне ощущений.

    В концепции «квантового рождения вселенной», выдвинутой в 1973 г. П. И. Фоминым и Е. Трионом, причинно-обусловленные связи на всех структурных уровнях Мира наблюдается в «начальном» состоянии вселенной, которое представляло собой физический вакуум. А причиной наблюдаемого ныне космологического расширения могла стать антигравитирующая способность вакуума, вызывающего отталкивание между «внесенными» в него частицами вещества. И для него давление отрицательно: p = - ε. Однако основным камнем преткновения квантового рождения вселенной заключается в необходимости объяснения, почему она выглядит изотропной при расширении из состояния сингулярности.

    Первое поколение космологических моделей соответствовало однородному и изотропному распределению материи, то есть описывало не реальное распределение вещества, а – усредненное по ячейкам, размер которых порядка межгалактических расстояний, с начальной сингулярностью – состоянием с бесконечной плотностью. Эволюция мира в этих моделях зависит от суммарной плотности вещества ρ в настоящую эпоху. И если ρ < ρ крит. (~10 -25 г/см 3), то пространство бесконечно («открытый мир») и наблюдающееся ныне космологическое расширение неограниченно; в случае ρ > ρ крит. – пространство конечно, а расширение, спустя некоторое время, должно смениться сжатием («замкнутый мир»). Открыт или замкнут, в рамках данных моделей Мир (Метагалактика) в настоящее время не ясно, так как современные наблюдательные оценки свидетельствуют о том, что ρ / ρ крит ~1.

    Второе поколение космологических моделей. Учет неоднородностей реального распределения вещества в Метагалактике привел к несколько иной картине её эволюции. Эти модели противоречат наблюдаемой глобальной изотропии реликтового (фонового) излучения. Потому как любое сколь угодно малое отклонение от изотропности быстро растет с расширением вселенной, и она не может открываться в пространстве изотропно, поскольку расширение идет быстрее, чем распространяется электромагнитное излучение.

    В моделях третьего поколения предусматривается «первичное квантование» параметров модели (приближение к полной квантовой модели мира). Однако модели третьего и второго поколений не позволяют объяснить изотропность Метагалактики, включая изотропность реликтового излучения, за исключением его флуктуации – дипольная компонента.